Program Summary
The Optimization with Noisy Intermediate-Scale Quantum devices (ONISQ) program aims to exploit quantum information processing before fully fault-tolerant quantum computers are realized. This effort will pursue a hybrid concept that combines intermediate-sized quantum devices with classical systems to solve a particularly challenging set of problems known as combinatorial optimization. ONISQ seeks to demonstrate the quantitative advantage of quantum information processing by leapfrogging the performance of classical-only systems in solving optimization challenges.
ONISQ researchers will be tasked with developing quantum systems that are scalable to hundreds or thousands of qubits with longer coherence times and improved noise control. Researchers will also be required to efficiently implement a quantum optimization algorithm on noisy intermediate-scale quantum devices, optimizing allocation of quantum and classical resources. Benchmarking will also be part of the program, with researchers making a quantitative comparison of classical and quantum approaches. In addition, the program will identify classes of problems in combinatorial optimization where quantum information processing is likely to have the biggest impact. It will also seek to develop methods for extending quantum advantage on limited size processors to large combinatorial optimization problems via techniques such as problem decomposition.