Breadcrumb

  1. Home

 

Tank Breaker/Javelin

Beginning in the 1970s, DARPA began the Tank Breaker program in response to deficiencies identified by the U.S. Army and U.S. Marine Corps in their existing infantry anti-tank weapon. The Army evaluated two Tank Breaker designs by industry participants against alternatives in a shoot-off conducted in 1987-1988. The results led to selection of the Texas Instruments (later Raytheon) solution to the tank warfare challenge. Department of Defense officials approved it for full-scale development in 1989 under the Army’s Advanced Anti-armor Weapon System-Medium (AAWS-M) program.

Unmanned Undersea Vehicle

Full-sized, staffed ships and other sea platform cannot perform safely in all Navy missions in near-shore, or littoral waters. These missions include mine location and avoidance as well as remote surveillance. In 1988, a joint DARPA/Navy Unmanned Undersea Vehicle (UUV) Program was initiated, with the goal of demonstrating that UUVs could meet specific Navy mission requirements.

Taurus Launch Vehicle

DARPA initiated a Small Standard Launch Vehicle (SSLV) program that led to the Taurus, a launch vehicle designed to supply the Department of Defense with quick-response, low-cost launch of tactical satellites from ground facilities. The initial DARPA model was first test launched in 1989 and first used operationally in 1994. The prime contractor subsequently offered the vehicle in four versions.

RF Wafer Scale Integration

The microelectronics revolution led to a ubiquity of fingernail-sized chips bearing integrated circuits made of large numbers of tiny transistors, interconnects, and other miniaturized components and devices. DARPA challenged the research community to achieve the tight integration of chips to the scale of the entire semiconductor wafer from which, normally, hundreds of chips would be diced and then packaged into separate components of electronic systems.

High-Definition Systems

The high-definition systems program was started in 1989 as the High definition TV program. It was renamed High Definition Systems in 1990 and continued until 1993. The program supported work on display-related technologies, including materials and manufacturing techniques. One novel technology supported by the program, digital mirror projection technology, became a commercial success in electronic projectors, and led to an Emmy Award and an Oscar Technical Achievement Award.

Cermet Body Armor

In addition to supporting advanced materials development since its early years, DARPA has at times been called upon to identify technologies for specific near-term applications. One of these tasks occurred for Operation Desert Storm (1991-1992) when ground forces experienced a critical need for more effective armor. The DARPA solution in this case, particularly for roof protection for the U.S.

Uncooled IR Detection

DARPA proved that practical, uncooled infrared detector technology was possible under the Low Cost, Uncooled Sensor Program (LOCUSP) of the late 1980s. Previous generations of IR sensors used cryogenics to cool the detector materials and reduce system noise.

Short Takeoff Vertical Landing

DARPA began working with the U.K. Ministry of Defense (MoD) to develop a follow-on supersonic generation to the AV-8 Harrier, a pioneer aircraft for short takeoff and landing (STOL) capabilities. The international program that emerged from this intention, the Advanced Short Takeoff Vertical Landing (ASTOVL), expired in 1991, but various component efforts toward the same end continued.

Radar Mapping

In the early 1990s, DARPA developed an airborne, all-weather, radar-based mapping capability that generated maps of the terrain with an accuracy to within six feet of elevation and that could do so day or night, and in adverse weather conditions, such as thick cloud cover or rain. Under DARPA sponsorship, the Environmental Research Institute of Michigan (ERIM) carried out the project and mounted an interferometric radar system on a Learjet 36A to collect data, which was then processed on the ground into digital elevation models.

Contact