Defense Advanced Research Projects AgencyTagged Content List

Size, Weight and Power Constraints

Making technologies smaller, lighter and more power-efficient to increase military effectiveness

Showing 10 results for SWAP + ISR RSS
Military sensor systems typically require between three and eight years to complete, resulting in sensor technology unable to keep pace with rapidly evolving mission needs. Commercial systems of similar complexity, forced by competitive pressures, are routinely developed in one to two years.
Airspace for the flying public today is perpetually congested yet remarkably safe, thanks in no small part to a well-established air traffic control system that tracks, guides and continuously monitors thousands of flights a day. When it comes to small unmanned aerial systems (UAS) such as commercial quadcopters, however, no such comprehensive tracking system exists. And as off-the-shelf UAS become less expensive, easier to fly, and more adaptable for terrorist or military purposes, U.S. forces will increasingly be challenged by the need to quickly detect and identify such craft—especially in urban areas, where sight lines are limited and many objects may be moving at similar speeds.
Dominance of the radio frequency (RF) spectrum is critical to successful U.S. military operations. Today, we do this using discrete radar, electronic warfare (EW), and communication payloads that are separately designed, procured, and integrated on platforms. These payloads typically use dedicated apertures, are realized with tightly coupled hardware and software, and are not well-coordinated in their use of spectrum. This rigid and constrained approach makes it difficult and time-consuming to adopt new technology, adapt to rapidly changing adversary threats, maneuver functions effectively in spectrum, and create comprehensive compact RF systems.
The past decade has seen explosive growth in development and training of artificial intelligence (AI) systems. However, as AI has taken on progressively more complex problems, the amount of computation required to train the largest AI systems has been increasing ten-fold annually. While AI advances are beginning to have a deep impact in digital computing processes, trade-offs between computational capability, resources and size, weight, and power consumption (SWaP) will become increasingly critical in the near future.
Military aircraft are vulnerable in conditions of degraded visibility due to pilots’ inability to discern obstacles, cables, or other aircraft during flight or while landing. The danger is particularly acute in demanding, harsh environments such as Iraq and Afghanistan.
| Air | ISR | Sensors | SWAP |