Defense Advanced Research Projects AgencyTagged Content List

Electromagnetic Spectrum and Bandwidth

Novel concepts and technologies for maximizing use of the electromagnetic spectrum

Showing 101 results for Spectrum RSS
A newly-announced DARPA program is betting that unprecedented on-chip integration of workhorse electronic components, such as transistors and capacitors, with less-familiar magnetic components with names like circulators and isolators, will open an expansive pathway to more capable electromagnetic systems. The Magnetic, Miniaturized, and Monolithically Integrated Components (M3IC), program will orchestrate research into miniaturized magnetic components with a goal of catalyzing chip-based innovations in radar and other radio frequency (RF) systems—and satisfying growing military and civilian demands for new ways to maneuver within the increasingly crowded electromagnetic spectrum.
In March, DARPA officials first publicly floated plans for the Spectrum Collaboration Challenge, an initiative designed to ensure that the exponentially growing number of military and civilian wireless devices will have full access to the increasingly crowded electromagnetic spectrum. Today, with the Agency release of detailed postings about the competition’s architecture, rules, and two participation options for seeking one of the up to 30 available slots, SC2 is officially on.
Nothing is more iconic of today’s high technology than the semiconductor chips inside our computers, phones, military systems, household appliances, fitness monitors, and even birthday cards and pets. Since its inception in 1992, DARPA’s Microsystems Technology Office (MTO) has helped create and prevent strategic surprise through investments in compact microelectronic components, such as microprocessors, microelectromechanical systems (MEMS), and photonic devices. MTO’s pioneering efforts to apply advanced capabilities in areas such as wide-band-gap materials, phased array radars, high-energy lasers, and infrared imaging, have helped the United States establish and maintain technological superiority for more than two decades.
In a vision shared by innovators, entrepreneurs, and planners in both defense and civilian contexts, the skies of the future will be busy with unmanned aerial vehicles (UAVs). Unseen but central to the realization of this vision is wireless communication within and between those future fleets of UAVs that is reliable and resistant to both unintentional and ill-willed interference. “If these UAVs can’t communicate, they don’t take off or they don’t operate the way we want them to” said Josh Conway, a program manager in DARPA’s Microsystems Technology Office. 
Unveiled in March 2016, DARPA’s Spectrum Collaboration Challenge has reached an early milestone by choosing 30 contenders for the first of the three-phase competition, slated to culminate at the end of 2019 with a live match of finalists who have survived the two preliminary contests. In addition to 22 teams from academia and small and large companies, eight individuals have made it into the competition.