Defense Advanced Research Projects AgencyTagged Content List

Electronics and Microchips

Technologies based on the manipulation of electrons and, increasingly, photons

Showing 5 results for Electronics + Mobile RSS
Since its inception in 1991, DARPA’s Microsystems Technology Office (MTO) has been working to create and prevent strategic surprise through investments in compact microelectronic components such as microprocessors, microelectromechanical systems (MEMS), and photonic devices. MTO-derived innovations and advanced capabilities in areas such as wide-band gap materials, phased-array radars, high-energy lasers, and infrared imaging have helped the United States establish and maintain technological superiority for more than two decades.
05/18/2015
Since its inception in 1991, DARPA’s Microsystems Technology Office (MTO) has been working to create and prevent strategic surprise through investments in compact microelectronic components such as microprocessors, microelectromechanical systems (MEMS), and photonic devices. MTO-derived innovations and advanced capabilities in areas such as wide-band gap materials, phased-array radars, high-energy lasers, and infrared imaging have helped the United States establish and maintain technological superiority for more than two decades.
03/30/2017
If human ears could hear the electromagnetic spectrum, the noise levels these days would be overwhelming. The skyrocketing use of wireless devices in military and civilian domains has created a complicated and cacophonous environment, filled with signals of widely varying frequency and amplitude and a menagerie of modulations. For warfighters trying to maintain critical communications links, interpret ambiguous radar returns, or defend against electronic warfare tactics, the ability to sort through that thicket of waveforms is essential—to identify where key signals are coming from, what kind of signals they are, and how best to send and receive information via the least contested spectral bands.
01/24/2018
There is increasing interest in making broader use of the millimeter wave frequency band for communications on small mobile platforms where narrow antenna beams from small radiating apertures provide enhanced communication security. Today’s millimeter wave systems, however, are not user friendly and are designed to be platform specific, lacking interoperability and are thus reserved for only the most complex platforms. To expand the use of millimeter wave phased-arrays and make them broadly applicable across DoD systems, many technical challenges must be addressed, including wideband frequency coverage, precision beam pointing, user discover and mesh networking.
There is increasing interest in making broader use of the millimeter wave frequency band for communications on small mobile platforms where narrow antenna beams from small radiating apertures provide enhanced communication security. Today’s millimeter wave systems, however, are not user friendly and are designed to be platform specific, lacking interoperability and are thus reserved for only the most complex platforms.