Defense Advanced Research Projects AgencyTagged Content List


Relating to digital systems and information

Showing 27 results for Cyber + News RSS
Today, the expeditious delivery of electronic documents, messages, and other data is relied on for everything from communications to navigation. As the near instantaneous exchange of information has increased in volume, so has the variety of electronic data formats–from images and videos to text and maps. Verifying the trustworthiness and provenance of this mountain of electronic information is an exceedingly difficult task as individuals and organizations routinely engage with data shared by unauthenticated and potentially compromised sources.
Throughout DARPA’s history, artificial intelligence (AI) has been an important area of groundbreaking research and development (R&D). In the 1960s, DARPA researchers completed some of the foundational work in the field, leading to the creation of expert systems, or the first wave of AI technologies. Since then, DARPA has funded developments in the second wave of AI – machine learning – which has significantly impacted defense and commercial capabilities in areas such as speech understanding, self-driving cars, and image recognition.
Today, machine learning (ML) is coming into its own, ready to serve mankind in a diverse array of applications – from highly efficient manufacturing, medicine and massive information analysis to self-driving transportation, and beyond. However, if misapplied, misused or subverted, ML holds the potential for great harm – this is the double-edged sword of machine learning.
For the past decade, cybersecurity threats have moved from high in the software stack to progressively lower levels of the computational hierarchy, working their way towards the underlying hardware. The rise of the Internet of Things (IoT) has driven the creation of a rapidly growing number of accessible devices and a multitude of complex chip designs needed to enable them. With this rapid growth comes increased opportunity for economic and nation-state adversaries alike to shift their attention to chips that enable complex capabilities across commercial and defense applications. The consequences of a hardware cyberattack are significant as a compromise could potentially impact not millions, but billions of devices.
Military systems are increasingly using software to support functionality, new capabilities, and beyond. Before a new piece of software can be deployed within a system however, its functional safety and compliance with certain standards must be verified and ultimately receive certification. As the rapid rate of software usage continues to grow, it is becoming exceedingly difficult to assure that all software considered for military use is coded correctly and then tested, verified, and documented appropriately.