Defense Advanced Research Projects AgencyTagged Content List

Human-Machine Interface

Relating to the interaction between humans and machines

Showing 68 results for Interface RSS
01/01/1968

Conceived by Douglas Engelbart and developed by him and colleagues at the Stanford Research Institute (SRI), the groundbreaking computer framework known as oN-Line System (NLS), jointly funded by ARPA and the Air Force, evolved throughout the decade. In what became known as "The Mother of All Demos"—because it demonstrated the revolutionary features of NLS as well as never-before-seen video presentation technologies—Engelbart unveiled NLS in San Francisco on December 9, 1968, to a large audience at the Fall Joint Computer Conference. Engelbart's terminal was linked to a large-format video projection system loaned by the NASA Ames Research Center and via telephone lines to a SDS 940 computer (designed specifically for time-sharing among multiple users) 30 miles away in Menlo Park, California, at the Augmentation Research Center, which Engelbart founded at SRI. On a 22-foot-high screen with video insets, the audience could see Engelbart manipulate the mouse and watch as members of his team in Menlo Park joined in the presentation.

With the arrival of the ARPA Network at SRI in 1969, the time-sharing technology that seemed practical with a small number of users became impractical over a distributed network. NLS, however, opened pathways toward today’s astounding range of information technologies.

08/14/2015
For millennia, materials have mattered—so much so that entire eras have been named for them. From the Stone Age to the Bronze Age to the Iron Age and beyond, breakthroughs in materials have defined what was technologically possible and fueled revolutions in fields as diverse as electronics, construction and medicine. Today, DARPA is pursuing the next big advances in this fundamentally important domain.
04/22/2016
Advanced materials are increasingly embodying counterintuitive properties, such as extreme strength and super lightness, while additive manufacturing and other new technologies are vastly improving the ability to fashion these novel materials into shapes that would previously have been extremely costly or even impossible to create. Generating new designs that fully exploit these properties, however, has proven extremely challenging.
04/26/2016
Today’s ground-based armored fighting vehicles are better protected than ever, but face a constantly evolving threat: weapons increasingly effective at piercing armor. While adding more armor has provided incremental increases in protection, it has also hobbled vehicle speed and mobility and ballooned development and deployment costs. To help reverse this trend, DARPA’s Ground X-Vehicle Technology (GXV-T) program recently awarded contracts to eight organizations.
08/31/2016
DARPA-supported researchers have developed a new approach for synthesizing ultrathin materials at room temperature—a breakthrough over industrial approaches that have demanded temperatures of 800 °C or more. The advance opens a path to creating a host of previously unattainable thin-film microelectronics, whose production by conventional methods has been impossible because many components lose their critical functions when subjected to high temperatures.