Defense Advanced Research Projects AgencyTagged Content List

Automation Technologies

Automatic mechanical or digital operation

Showing 2 results for Automation + Security RSS
01/09/2018
The rise of network-connected systems that are becoming embedded seemingly everywhere–from industrial control systems to aircraft avionics–is opening up a host of rich technical capabilities in deployed systems. Even so, as the collective technology project underlying this massive deployment of connectivity unfolds, more consumer, industrial, and military players are turning to inexpensive, commodity off-the-shelf (COTS) devices with general-purpose designs applicable for a range of functionalities and deployment options. While less costly and more flexible, commodity components are inherently less secure than the single-purpose, custom devices they are replacing.
The Automatic Implementation of Secure Silicon (AISS) program aims to ease the burden of developing secure chips. AISS seeks to create a novel, automated chip design flow that will allow security mechanisms to scale consistently with the goals of a chip design. The target design flow will provide a means of rapidly evaluating architectural alternatives that best address the required design and security metrics, as well as varying cost models to optimize the economics versus security trade-off. The target system on chip (SoC) – will be automatically generated, integrated, and optimized, and will consist of two partitions – an application specific processor partition and a security partition implementing the on-chip security features. By bringing greater automation to the chip design process, the burden of security inclusion can be profoundly decreased.