Defense Advanced Research Projects AgencyTagged Content List

Artificial Intelligence and Human-Computer Symbiosis Technologies

Technology to facilitate more intuitive interactions between humans and machines

Showing 6 results for AI + Systems RSS
08/02/2019
Department of Defense (DOD) systems and platforms are composed of numerous integrated cyber-physical subsystems, which create an enormous amount of complexity and makes their engineering a daunting task. Today, designing cyber-physical systems (CPS) requires an army of skilled engineers with the right domain expertise, and hundreds of domain-specific tools. The process used to design these systems is largely manual, creating long design cycles that often result in costly redesigns after building and testing the systems. The flaws in the process are numerous – from balancing predictability with cost-efficiency to operating under tight time constraints to integrating disparate pieces from multiple design teams.
August 12, 2019, 8:30 AM ET,
DARPA Conference Center
The Information Innovation Office is holding a Proposers Day meeting to provide information to potential proposers on the objectives of the new Symbiotic Design for Cyber Physical Systems program and to facilitate teaming. The goal of the program is to develop AI-based approaches to enable correct-by-construction design of military-relevant, cyber-physical systems (CPS), in order to reduce the time from their inception to deployment from years to months, and enhance innovation in design. These approaches would complement and augment existing model-based design technologies, and enable humans and computers to collaborate on correct-by-construction design of CPS.
The Digital RF Battlespace Emulator (DRBE) program aims to create the world’s first, large-scale, virtual RF environment for developing, training, and testing advanced radio frequency (RF) systems. The DRBE system will seek to enable numerous RF systems such as radar and electronic warfare (EW) systems to interact with each other in a fully closed-loop RF environment.
The goal of the Fundamental Design (FUN Design) program is to determine whether we can develop or discover a new set of building blocks to describe conceptual designs. The design building blocks will capture the components’ underlying physics allowing a family of nonintuitive solutions to be generated.
Cyber physical systems (CPS) are instrumental to current and future Department of Defense (DoD) mission needs – unmanned vehicles, weapon systems, and mission platforms are all examples of military-relevant CPS. These systems and platforms integrate cyber and physical subsystems, and the enormous complexity of the resulting CPS has made their engineering design a daunting challenge. An immediate consequence of this complexity is development cycles with prolonged timelines that challenge DoD’s ability to counter emerging threats.