Defense Advanced Research Projects AgencyTagged Content List

Artificial Intelligence and Human-Computer Symbiosis Technologies

Technology to facilitate more intuitive interactions between humans and machines

Showing 2 results for AI + Fundamentals RSS
05/26/2016
It’s not easy to put the intelligence in artificial intelligence. Current machine learning techniques generally rely on huge amounts of training data, vast computational resources, and a time-consuming trial and error methodology. Even then, the process typically results in learned concepts that aren’t easily generalized to solve related problems or that can’t be leveraged to learn more complex concepts. The process of advancing machine learning could no doubt go more efficiently—but how much so?
Machine learning has shown remarkable success across many application areas in recent years, leveraging advances in computing power and the availability of large sets of training data. It provides a tremendous opportunity to deploy data-driven systems in more complex and interactive tasks including personalized autonomy, agile robotics, self-driving vehicles, and smart cities. Despite dramatic progress, the machine learning community still lacks an understanding of the trade-offs and mathematical limitations of related technologies for a given domain, problem, or dataset.