Defense Advanced Research Projects AgencyTagged Content List

Artificial Intelligence and Human-Computer Symbiosis Technologies

Technology to facilitate more intuitive interactions between humans and machines

Showing 37 results for AI RSS
Deep Purple aims to advance the modeling of complex dynamic systems using new information-efficient approaches that make optimal use of data and known physics at multiple scales. The program is investigating next-generation deep learning approaches that use not only high throughput multimodal scientific data from observations and controlled experiments (including behaviors such as phase transitions and chaos), but also of the known science of such systems at whatever scales it exists.
Dramatic success in machine learning has led to a torrent of Artificial Intelligence (AI) applications. Continued advances promise to produce autonomous systems that will perceive, learn, decide, and act on their own. However, the effectiveness of these systems is limited by the machine’s current inability to explain their decisions and actions to human users. The Department of Defense is facing challenges that demand more intelligent, autonomous, and symbiotic systems. Explainable AI—especially explainable machine learning—will be essential if future warfighters are to understand, appropriately trust, and effectively manage an emerging generation of artificially intelligent machine partners.
The U.S. Government operates globally and frequently encounters so-called “low-resource” languages for which no automated human language technology capability exists. Historically, development of technology for automated exploitation of foreign language materials has required protracted effort and a large data investment. Current methods can require multiple years and tens of millions of dollars per language—mostly to construct translated or transcribed corpora.
Machine learning – the ability of computers to understand data, manage results and infer insights from uncertain information – is the force behind many recent revolutions in computing. Email spam filters, smartphone personal assistants and self-driving vehicles are all based on research advances in machine learning. Unfortunately, even as the demand for these capabilities is accelerating, every new application requires a Herculean effort. Teams of hard-to-find experts must build expensive, custom tools that are often painfully slow and can perform unpredictably against large, complex data sets.
New manufacturing technologies such as additive manufacturing have vastly improved the ability to create shapes and material properties previously thought impossible. Generating new designs that fully exploit these properties, however, has proven extremely challenging. Conventional design technologies, representations, and algorithms are inherently constrained by outdated presumptions about material properties and manufacturing methods. As a result, today’s design technologies are simply not able to bring to fruition the enormous level of physical detail and complexity made possible with cutting-edge manufacturing capabilities and materials.