Defense Advanced Research Projects AgencyTagged Content List

Artificial Intelligence and Human-Computer Symbiosis Technologies

Technology to facilitate more intuitive interactions between humans and machines

Showing 121 results for Artificial Intelligence RSS
Driven by the rapidly evolving national security threat landscape, future defense systems will need access to low size, weight, and power (SWaP) artificial intelligence (AI) solutions that can rapidly transition from idea to practice. In recent years, the ability to learn from large datasets has advanced significantly due to increases in hardware performance, advances in machine learning (ML) algorithms, and the availability of high quality open datasets.
Current artificial intelligence (AI) systems excel at tasks defined by rigid rules – such as mastering the board games Go and chess with proficiency surpassing world-class human players. However, AI systems aren’t very good at adapting to constantly changing conditions commonly faced by troops in the real world – from reacting to an adversary’s surprise actions, to fluctuating weather, to operating in unfamiliar terrain.
Media generation and manipulation technologies are advancing rapidly and purely statistical detection methods are quickly becoming insufficient for identifying falsified media assets. Detection techniques that rely on statistical fingerprints can often be fooled with limited additional resources (algorithm development, data, or compute).
Serial Interactions in Imperfect Information Games Applied to Complex Military Decision Making (SI3-CMD) builds on recent developments in artificial intelligence and game theory to enable more effective decisions in adversarial domains. SI3-CMD will explore several military decision making applications at strategic, tactical, and operational levels and develop AI/game theory techniques appropriate for their problem characteristics.
The Space Environment Exploitation (SEE) program seeks to develop new models and sensing modalities to predict and observe the dynamics of the near-earth space environment. The SEE program explores how to go beyond magnetohydrodynamic descriptions of the magnetosphere, ionosphere, thermosphere coupled system to include wave/wave, wave/particle, and particle/particle interactions while using the latest advances in high performance computing such as GPUs and TPUs.