Defense Advanced Research Projects AgencyTagged Content List

Artificial Intelligence and Human-Computer Symbiosis Technologies

Technology to facilitate more intuitive interactions between humans and machines

Showing 69 results for AI RSS
Machine learning – the ability of computers to understand data, manage results and infer insights from uncertain information – is the force behind many recent revolutions in computing. Email spam filters, smartphone personal assistants and self-driving vehicles are all based on research advances in machine learning. Unfortunately, even as the demand for these capabilities is accelerating, every new application requires a Herculean effort. Teams of hard-to-find experts must build expensive, custom tools that are often painfully slow and can perform unpredictably against large, complex data sets.
The goal of the Radio Frequency Machine Learning Systems (RFMLS) Program is to develop the foundations for applying modern data-driven Machine Learning (ML) to the RF Spectrum domain. These innovations form the basis of a new wave of Signal Processing technologies to address performance limitations of conventionally designed radio frequency (RF) systems such as radar, signals intelligence, electronic warfare, and communications.
Serial Interactions in Imperfect Information Games Applied to Complex Military Decision Making (SI3-CMD) builds on recent developments in artificial intelligence and game theory to enable more effective decisions in adversarial domains. SI3-CMD will explore several military decision making applications at strategic, tactical, and operational levels and develop AI/game theory techniques appropriate for their problem characteristics.
New manufacturing technologies such as additive manufacturing have vastly improved the ability to create shapes and material properties previously thought impossible. Generating new designs that fully exploit these properties, however, has proven extremely challenging. Conventional design technologies, representations, and algorithms are inherently constrained by outdated presumptions about material properties and manufacturing methods. As a result, today’s design technologies are simply not able to bring to fruition the enormous level of physical detail and complexity made possible with cutting-edge manufacturing capabilities and materials.
The Understanding Group Biases (UGB) program seeks to develop and prove out capabilities that can radically enhance the scale, speed, and scope of automated, ethnographic-like methods for capturing group biases and cultural models from increasingly available large digital datasets.