Defense Advanced Research Projects AgencyTagged Content List

Artificial Intelligence and Human-Computer Symbiosis Technologies

Technology to facilitate more intuitive interactions between humans and machines

Showing 37 results for AI RSS
The lifelong human imperative to communicate is so strong that people talk not only to other people but also to their pets, their plants and their computers. Unlike pets and plants, computers might one day reciprocate. DARPA's new Communicating with Computers (CwC) program aims to develop technology to turn computers into good communicators.
Advanced materials are increasingly embodying counterintuitive properties, such as extreme strength and super lightness, while additive manufacturing and other new technologies are vastly improving the ability to fashion these novel materials into shapes that would previously have been extremely costly or even impossible to create. Generating new designs that fully exploit these properties, however, has proven extremely challenging.
It’s not easy to put the intelligence in artificial intelligence. Current machine learning techniques generally rely on huge amounts of training data, vast computational resources, and a time-consuming trial and error methodology. Even then, the process typically results in learned concepts that aren’t easily generalized to solve related problems or that can’t be leveraged to learn more complex concepts. The process of advancing machine learning could no doubt go more efficiently—but how much so?
Self-driving taxis. Cell phones that react appropriately to spoken requests. Computers that outcompete world-class chess and Go players. Artificial Intelligence (AI) is becoming part and parcel of the technological landscape—not only in the civilian and commercial worlds but also within the Defense Department, where AI is finding application in such arenas as cybersecurity and dynamic logistics planning.
Today is the grand opening of the Colosseum. We are not referring here to the storied concrete Colosseum in Rome, which was completed in 80 A.D. and remains famous for its ancient gladiatorial spectacles. We are talking here about DARPA’s Colosseum, a next-generation electronic emulator of the invisible electromagnetic world. Though it resides in a mere 30-foot by 20-foot server room on the campus of the Johns Hopkins University Applied Physics Laboratory (APL) in Laurel, MD, the Colosseum is capable of creating a much larger, and critically important wireless world.