Defense Advanced Research Projects AgencyTagged Content List

Harness Biological Systems

Leveraging genetic technologies to engineer synthetic or natural organisms

Showing 10 results for Bio-systems + Programs RSS
The Advanced Plant Technologies (APT) program seeks to develop plants capable of serving as next-generation, persistent, ground-based sensor technologies to protect deployed troops and the homeland by detecting and reporting on chemical, biological, radiological, nuclear, and explosive (CBRNE) threats. Such biological sensors would be effectively energy-independent, increasing their potential for wide distribution, while reducing risks associated with deployment and maintenance of traditional sensors. These technologies could also potentially support humanitarian operations by, for example, detecting unexploded ordnance in post-conflict settings.
The BioFuels program seeks to develop renewable jet fuel (JP-8) for military aviation that meets or exceeds JP-8 performance metrics to help reduce the military’s dependence on traditional petroleum-derived fuels. These renewable fuels are derived from cellulosic materials and algal species that don’t compete with consumable food crops. The cellulosic material conversion process aims to demonstrate technology to enable 50% energy conversion efficiency in the conversion of cellulosic material feedstock to JP-8.
The Biological Robustness in Complex Settings (BRICS) program aims to transform engineered microbial biosystems into reliable, cost-effective strategic resources for the Department of Defense (DoD), enabling future applications in the areas of intelligence, readiness, and force protection. Examples include the identification of the geographical provenance of objects; protection of critical systems and infrastructure against corrosion, biofouling, and other damage; sensing of hazardous compounds; and efficient, on-demand bio-production of novel coatings, fuels, and drugs.
The goal of the Engineered Living Materials (ELM) program is to develop living materials that combine the structural properties of traditional building materials with attributes of living systems, including the ability to rapidly grow, self-repair, and adapt to the environment. Living materials represent a new opportunity to leverage engineered biology to solve existing problems associated with the construction and maintenance of our built environments, as well as new capabilities to craft smart infrastructure that dynamically responds to the surroundings.
The Insect Allies program is pursuing scalable, readily deployable, and generalizable countermeasures against potential natural and engineered threats to the food supply with the goals of preserving the U.S. crop system. National security can be quickly jeopardized by naturally occurring threats to the crop system, including pathogens, drought, flooding, and frost, but especially by threats introduced by state or non-state actors. Insect Allies seeks to mitigate the impact of these incursions by applying targeted therapies to mature plants with effects that are expressed at relevant timescales—namely, within a single growing season.