Defense Advanced Research Projects AgencyTagged Content List

Harness Biological Systems

Leveraging genetic technologies to engineer synthetic or natural organisms

Showing 11 results for Bio-systems + News RSS
“Biology is nature’s ultimate innovator, and any agency that hangs its hat on innovation would be foolish not to look to this master of networked complexity for inspiration and solutions.” – DARPA Director Arati Prabhakar, Testimony to Subcommittee on Intelligence, Emerging Threats and Capabilities, U.S. House of Representatives, March 26, 2014
Researchers working on DARPA’s Quantum Effects in Biological Environments (QuBE) program have shown that the electromagnetic noise that permeates modern urban environments can disrupt a bird’s internal magnetic compass. The findings settle a decades-long debate into whether low-level, artificial electric and magnetic fields can affect biological processes in higher vertebrates. For DARPA, the results hint at a new class of bio-inspired sensors at the intersection of biology and quantum physics.
The development of increasingly sophisticated techniques and tools to sequence, synthesize and manipulate genetic material has led to the rapidly maturing discipline of synthetic biology. To date, work in synthetic biology has focused primarily on manipulating individual species of domesticated organisms to perform specific tasks, such as producing medicines or fuels.
The structural materials that are currently used to construct homes, buildings, and infrastructure are expensive to produce and transport, wear out due to age and damage, and have limited ability to respond to changes in their immediate surroundings. Living biological materials—bone, skin, bark, and coral, for example—have attributes that provide advantages over the non-living materials people build with, in that they can be grown where needed, self-repair when damaged, and respond to changes in their surroundings.
A new DARPA program could help unlock the potential of advanced gene editing technologies by developing a set of tools to address potential risks of this rapidly advancing field. The Safe Genes program envisions addressing key safety gaps by using those tools to restrict or reverse the propagation of engineered genetic constructs.