Defense Advanced Research Projects AgencyTagged Content List

Thermal Management

Materials, designs and systems to manage and disperse heat and improve technology effectiveness

Showing 8 results for Thermal + Programs RSS
The increased density of components in today’s electronics has pushed heat generation and power dissipation to unprecedented levels. Current thermal management solutions, usually involving remote cooling, where heat must be conducted away from components before rejection to the air, are unable to limit the temperature rise of today’s complex electronic components without adding considerable weight and volume to electronic systems. The result is complex military systems that continue to grow in size and weight due to the inefficiencies of existing thermal management hardware.
The Materials Architectures and Characterization for Hypersonics (MACH) program aims to develop and demonstrate new materials architectures for sharp, shape-stable, cooled leading edges for hypersonic vehicles. The program will investigate innovative approaches that enable revolutionary advances in the materials, design and implementation of shape-stable, high heat flux capable leading edge systems.
Recent advances in our understanding of light-matter interactions, often with patterned and resonant structures, reveal nascent concepts for new interactions that may impact many applications. Examples of these novel phenomena include interactions involving active media, symmetry, non-reciprocity, and linear/nonlinear resonant coupling effects.
Significant enhancements in fundamental device materials, technologies and system integration have led to rapid increases in the total power consumption of DoD systems. In many cases, power consumption has increased while system size has decreased, leading to an even greater problem with heat density. Thermal management of DoD systems often imposes the main obstacle to further enhancements.
As electronic system technology advances – with continual increases in requirements leading to increasing demand for higher power consumption – there has been increasing pressure on the thermal engineering and heat rejection technologies used. DoD systems are driving conflicting needs for high performance as well as reduced size and weight. DARPA makes many investments in new technologies that can improve performance or reduce size and weight.