Defense Advanced Research Projects AgencyTagged Content List

Thermal Management

Materials, designs and systems to manage and disperse heat and improve technology effectiveness

Showing 10 results for Thermal RSS
The increased density of electronic components and subsystems in military electronic systems exacerbates the thermal management challenges facing engineers. The military platforms that host these systems often cannot physically accommodate the large cooling systems needed for thermal management, meaning that heat can be a limiting factor for performance of electronics and embedded computers.
Many military radio frequency (RF) systems, like radar and communication systems, use a class of power amplifiers (PAs) called monolithic microwave integrated circuits (MIMIC). MMIC PAs using gallium nitride (GaN) transistors hold great promise for enhanced RF performance, but operational characteristics are strongly affected by thermal resistance. Much of this resistance comes at the thermal junction where the substrate material of the circuit connects to the GaN transistor. If the junction and substrate have poor thermal properties, temperature will rise and performance will decrease.
A unique class of engineered light-manipulating materials, known as metamaterials or structured materials, makes use of patterns of strongly interacting wavelength or sub-wavelength-sized elements. Because of these intricate internal and surface structures, new properties have emerged, some exhibiting behavior that has resulted in rewriting long-understood “laws” for how light and other electromagnetic (EM) waves interact with materials. These materials have been opening up new options for controlling EM waves in many technological arenas, among them imaging, thermal control, and frequency conversion. Specific applications include night-vision, heat reflection and management in aircraft engines, and temperature regulation of electronics on satellites in the hot-and-cold extremes of space.
November 28, 2017,
DARPA's Defense Sciences Office is sponsoring a Proposers Day webcast to provide information to potential proposers on the objectives of an anticipated Broad Agency Announcement (BAA) for the Nascent Light-Matter Interactions (NLM) program. The Proposers Day will be held via prerecorded webcast on November 28, 2017 from 1:00 PM to 2:00 PM. Advance registration is required for viewing the webcast.
The increased density of components in today’s electronics has pushed heat generation and power dissipation to unprecedented levels. Current thermal management solutions, usually involving remote cooling, where heat must be conducted away from components before rejection to the air, are unable to limit the temperature rise of today’s complex electronic components without adding considerable weight and volume to electronic systems. The result is complex military systems that continue to grow in size and weight due to the inefficiencies of existing thermal management hardware.