Defense Advanced Research Projects AgencyTagged Content List

Foundational Strategic Technologies and Systems

Versatile enabling technologies that could lead to entire new classes of capabilities

Showing 24 results for Tech-Foundations + Algorithms RSS
Deployed electronic systems increasingly require advanced processing capabilities, however the time and power required to access system memory – commonly referred to as the “memory bottleneck” – takes a significant toll on their performance. Any substantial improvement in electronic system performance will require a radical reduction in memory access time and overall dynamic power of the system. The use of a monolithic three-dimensional system-on-chip (SoC) stack to integrate memory and logic is one approach that could dramatically alter the memory bottleneck challenge.
Program Manager
Dr. Odom joined DARPA in late 2019 as a program manager in the Adaptive Capabilities Office focused on technology development to drive new warfighting architectures.
The advance of technology has evolved the roles of humans and machines in conflict from direct confrontations between humans to engagements mediated by machines. Originally, humans engaged in primitive forms of combat. With the advent of the industrial era, however, humans recognized that machines could greatly enhance their warfighting capabilities. Networks then enabled teleoperation, which eventually proved vulnerable to electronic attack and subject to constraint due to long signal propagation distances and times. The next stage in warfare will involve more capable autonomous systems, but before we can allow such machines to supplement human warfighters, they must achieve far greater levels of intelligence.
In June 2017, DARPA announced the Electronics Resurgence Initiative (ERI) as a bold response to several technical and economic trends in the microelectronics sector. Among these trends, the rapid increase in the cost and complexity of advanced microelectronics design and manufacture is challenging a half-century of progress under Moore’s Law, prompting a need for alternative approaches to traditional transistor scaling.