Defense Advanced Research Projects AgencyTagged Content List

Precision Targeting

Related to technologies that improve accuracy of weapons while reducing collateral damage

Showing 6 results for Targeting + Programs RSS
For military snipers, acquiring moving targets in unfavorable conditions, such as high winds and dusty terrain commonly found in Afghanistan, is extremely challenging with current technology. It is critical that snipers be able to engage targets faster, and with better accuracy, since any shot that doesn’t hit a target also risks the safety of troops by indicating their presence and potentially exposing their location.
For decades, U.S. military air operations have relied on increasingly capable multi-function manned aircraft to execute critical combat and non-combat missions. Adversaries’ abilities to detect and engage those aircraft from longer ranges have improved over time as well, however, driving up the costs for vehicle design, operation and replacement. An ability to send large numbers of small unmanned air systems (UASs) with coordinated, distributed capabilities could provide U.S. forces with improved operational flexibility at much lower cost than is possible with today’s expensive, all-in-one platforms—especially if those unmanned systems could be retrieved for reuse while airborne.
Enemy surface-to-air threats to manned and unmanned aircraft have become increasingly sophisticated, creating a need for rapid and effective response to this growing category of threats. High power lasers can provide a solution to this challenge, as they harness the speed and power of light to counter multiple threats. Laser weapon systems provide additional capability for offensive missions as well—adding precise targeting with low probability of collateral damage. For consideration as a weapon system on today’s air assets though, these laser weapon systems must be lighter and more compact than the state-of-the-art has produced.
PCAS seeks to fundamentally increase Close Air Support effectiveness by enabling dismounted ground agents and combat aircrews to share real-time situational awareness and weapons systems data.
The Seeker Cost Transformation (SECTR) program seeks to develop novel weapon terminal sensing and guidance technologies and systems for air-launched, air-delivered weapons. SECTR technologies would enable weapons to acquire fixed and moving targets with only minimal external support; achieve high navigation accuracy in a GPS-denied environment; and be low size, weight, and cost.