Defense Advanced Research Projects AgencyTagged Content List

Systems of Systems

Related to new capabilities based on synergy among multiple diverse systems

Showing 26 results for Systems + Programs RSS
Today, code for input data validation is typically written manually in an ad-hoc manner. For commonly-used electronic data formats, input validation is, at a minimum, a problem of scale whereby specifications of these formats comprise hundreds to thousands of pages. Input validation thus translates to thousands or more conditions to be checked against the input data before the data can be safely processed.
Cyber physical systems (CPS) are instrumental to current and future Department of Defense (DoD) mission needs – unmanned vehicles, weapon systems, and mission platforms are all examples of military-relevant CPS. These systems and platforms integrate cyber and physical subsystems, and the enormous complexity of the resulting CPS has made their engineering design a daunting challenge. An immediate consequence of this complexity is development cycles with prolonged timelines that challenge DoD’s ability to counter emerging threats.
Future U.S. land forces are increasingly likely to face an adversary force that is overwhelmingly superior in size and armament with formidable anti-access/area denial (A2/AD) capabilities. SESU seeks to deliver system-of-systems (SoS) capabilities that could enable a small unit (~200-300 soldiers, corresponding materiel footprint, and limited rear-echelon support) to destroy, disrupt, degrade, and/or delay the adversary's A2/AD and maneuver capabilities in order to enable joint and coalition multi-domain operations at appropriate times and locations.
| A2/AD | BMC2 | Systems |
The SoSITE program aims to develop system of systems architectures to maintain U.S. air superiority in contested environments.
The undersea domain imposes well-known limits on communication and therefore the capacity to transfer the right information necessary to its intended purpose. The TIMEly program aims to develop concepts for a heterogeneous underwater network architecture that enables the vision of mosaic warfare by the contemporaneous composition of effect chains from available assets in any domain, but with an emphasis on the underwater domain in order to provide options for execution on the fly.