Defense Advanced Research Projects AgencyTagged Content List

Systems of Systems

Related to new capabilities based on synergy among multiple diverse systems

Showing 26 results for Systems + Programs RSS
Managing complexity is a central problem in software engineering. A common approach to address this challenge is concretization, in which a software engineer makes decisions based on a set of apparently or almost equivalent options to enable the resulting code to compile. Concretization makes the process of software development more controllable, allowing the engineer to define and implement an architecture, divide the development tasks into manageable parts, establish conventions to enable their integration, and integrate them into a cohesive software system.
The Manufacturable Gradient Index Optics (M-GRIN) program seeks to advance Gradient Index (GRIN) design and fabrication technology. This program will develop new lens design methods and tools coupled to fabrication processes and manufacturing tolerances that will provide a pathway to a scalable manufacturing system, which can flexibly produce lenses in units of one to thousands. DARPA seeks to design, fabricate and demonstrate manufacturing feasibility of GRIN-based optical assemblies. The program will address all of the following technology areas: 1) materials development, 2) optical element design, 3) test and evaluation methods (metrology), and 4) manufacturing.
There is increasing interest in making broader use of the millimeter wave frequency band for communications on small mobile platforms where narrow antenna beams from small radiating apertures provide enhanced communication security. Today’s millimeter wave systems, however, are not user friendly and are designed to be platform specific, lacking interoperability and are thus reserved for only the most complex platforms.
As nation-state and non-state adversaries adapt and apply commercially available state-of-the-art technology in urban conflict, expeditionary U.S. forces face a shrinking operational advantage in potential future military conflicts, which are most likely to be fought in littoral and coastal cities. The goal of the Prototype Resilient Operations Testbed for Expeditionary Urban Operations (PROTEUS) program is to create and demonstrate tools to develop and test agile expeditionary urban operations concepts based on dynamically composable force packages.
Most camera designers seek to maximize spatial resolution and signal-to-noise (SNR). A wealth of information in the optical domain, however, is lost under those constraints. Specialty cameras exist to capture other types of information, but are not normally able to provide high SNR imagery at high spatial resolution from a single focal plane, and are used infrequently due to demands of additional camera systems. Today’s imaging systems primarily perform a single or limited set of measurements due, in part, to the underlying readout integrated circuits (ROICs), which sample the signal of interest and transfer the values off of the chip. Typically, ROICs are designed for a specific mode of operation, and, in essence, are application specific integrated circuits (ASICs).