Defense Advanced Research Projects AgencyTagged Content List

Systems of Systems

Related to new capabilities based on synergy among multiple diverse systems

Showing 72 results for Systems RSS
As commercial technologies become more advanced and widely available, adversaries are rapidly developing capabilities that put our forces at risk. To counter these threats, the U.S. military is developing systems-of-systems concepts in which networks of manned and unmanned platforms, weapons, sensors, and electronic warfare systems interact over robust satellite and tactical communications links. These approaches offer flexible and powerful options to the warfighter, but the complexity introduced by the increase in the number of employment alternatives creates a battle management challenge.
The goal of the Fundamental Design (FUN Design) program is to determine whether we can develop or discover a new set of building blocks to describe conceptual designs. The design building blocks will capture the components’ underlying physics allowing a family of nonintuitive solutions to be generated.
Modern computing systems are incapable of creating sufficient security protections such that they can be trusted with the most sensitive data while simultaneously being exposed to untrusted data streams. In certain places, the Department of Defense (DoD) and commercial industry have adopted a series of air-gaps – or breaks between computing systems – to prevent the leakage and compromise of sensitive information.
Managing complexity is a central problem in software engineering. A common approach to address this challenge is concretization, in which a software engineer makes decisions based on a set of apparently or almost equivalent options to enable the resulting code to compile. Concretization makes the process of software development more controllable, allowing the engineer to define and implement an architecture, divide the development tasks into manageable parts, establish conventions to enable their integration, and integrate them into a cohesive software system.
The Manufacturable Gradient Index Optics (M-GRIN) program seeks to advance Gradient Index (GRIN) design and fabrication technology. This program will develop new lens design methods and tools coupled to fabrication processes and manufacturing tolerances that will provide a pathway to a scalable manufacturing system, which can flexibly produce lenses in units of one to thousands. DARPA seeks to design, fabricate and demonstrate manufacturing feasibility of GRIN-based optical assemblies. The program will address all of the following technology areas: 1) materials development, 2) optical element design, 3) test and evaluation methods (metrology), and 4) manufacturing.