Defense Advanced Research Projects AgencyTagged Content List

Systems of Systems

Related to new capabilities based on synergy among multiple diverse systems

Showing 59 results for Systems RSS
Autonomy refers to a system’s ability to accomplish goals independently, or with minimal supervision from human operators in environments that are complex and unpredictable. Autonomous systems are increasingly critical to several current and future Department of Defense (DoD) mission needs.
The continued growth in unmanned, sensor, and networked devices is expected to drive the need for larger, more capable and more diverse communications systems. Among other enhancements, these systems must improve jam-resistance and low probability of detection to keep pace with adversaries’ growing electronic sophistication and must adapt to fast-changing operational environments. By contrast, today’s military communications architectures are static and inflexible.
System-of-Systems (SoS) architectures are increasingly central in managing defense, national security and urban infrastructure applications. However, it is difficult to model and currently impossible to systematically design such complex systems using existing tools, which has led to inferior performance, unexpected problems and weak resilience.
The growth of the internet-of-things (IoT) and network-connected composed systems (e.g., aircraft, critical-infrastructure, etc.) has led to unprecedented technical diversity in deployed systems. From consumer IoT devices developed with minimal built-in security, which are often co-opted by malware to launch large distributed denial of service (DDoS) attacks on internet infrastructure, to remote attacks on Industrial Control System (ICS) devices, these newly connected, composed systems provide a vast attack surface. While the diversity of functionality and the scope of what can now be connected, monitored, and controlled over the Internet has increased dramatically, economies of scale have decreased platform diversity.
The Cross-Domain Maritime Surveillance and Targeting (CDMaST) program seeks to identify and implement architectures consisting of novel combinations of manned and unmanned systems to deny ocean environments to adversaries as a means of projecting power. By exploiting promising new developments in unmanned systems along with emerging long-range weapon systems, the program aims to develop an advanced, integrated undersea and above-sea warfighting capability able to execute long-range attacks against submarines and ships over large contested maritime areas.