Defense Advanced Research Projects AgencyTagged Content List

Systems of Systems

Related to new capabilities based on synergy among multiple diverse systems

Showing 72 results for Systems RSS
There is increasing interest in making broader use of the millimeter wave frequency band for communications on small mobile platforms where narrow antenna beams from small radiating apertures provide enhanced communication security. Today’s millimeter wave systems, however, are not user friendly and are designed to be platform specific, lacking interoperability and are thus reserved for only the most complex platforms.
As nation-state and non-state adversaries adapt and apply commercially available state-of-the-art technology in urban conflict, expeditionary U.S. forces face a shrinking operational advantage in potential future military conflicts, which are most likely to be fought in littoral and coastal cities. The goal of the Prototype Resilient Operations Testbed for Expeditionary Urban Operations (PROTEUS) program is to create and demonstrate tools to develop and test agile expeditionary urban operations concepts based on dynamically composable force packages.
Most camera designers seek to maximize spatial resolution and signal-to-noise (SNR). A wealth of information in the optical domain, however, is lost under those constraints. Specialty cameras exist to capture other types of information, but are not normally able to provide high SNR imagery at high spatial resolution from a single focal plane, and are used infrequently due to demands of additional camera systems. Today’s imaging systems primarily perform a single or limited set of measurements due, in part, to the underlying readout integrated circuits (ROICs), which sample the signal of interest and transfer the values off of the chip. Typically, ROICs are designed for a specific mode of operation, and, in essence, are application specific integrated circuits (ASICs).
Today, code for input data validation is typically written manually in an ad-hoc manner. For commonly-used electronic data formats, input validation is, at a minimum, a problem of scale whereby specifications of these formats comprise hundreds to thousands of pages. Input validation thus translates to thousands or more conditions to be checked against the input data before the data can be safely processed.
Cyber physical systems (CPS) are instrumental to current and future Department of Defense (DoD) mission needs – unmanned vehicles, weapon systems, and mission platforms are all examples of military-relevant CPS. These systems and platforms integrate cyber and physical subsystems, and the enormous complexity of the resulting CPS has made their engineering design a daunting challenge. An immediate consequence of this complexity is development cycles with prolonged timelines that challenge DoD’s ability to counter emerging threats.