Defense Advanced Research Projects AgencyTagged Content List

Size, Weight and Power Constraints

Making technologies smaller, lighter and more power-efficient to increase military effectiveness

Showing 9 results for SWAP + Integration RSS
The explosive growth in mobile and telecommunication markets has pushed the semiconductor industry toward integration of digital, analog, and mixed-signal blocks into system-on-chip (SoC) solutions. Advanced silicon (Si) complementary metal oxide semiconductor (CMOS) technology has enabled this integration, but has also led to a rise in costs associated with design and processing.
Complex Defense systems, such as RADAR, communications, imaging and sensing systems rely on a wide variety of microsystems devices and materials. These diverse devices and materials typically require different substrates and different processing technologies, preventing the integration of these devices into single fabrication process flows. Thus, integration of these device technologies has historically occurred only at the chip-to-chip level, which introduces significant bandwidth and latency-related performance limitations on these systems, as well as increased size, weight, power, and packaging/assembly costs as compared to microsystems fully integrated on a single chip.
The Magnetic Miniaturized and Monolithically Integrated Components (M3IC) program aims to integrate magnetic components onto semiconductor materials, improving the size and functionality of electromagnetic (EM) systems for communications, radar, and electronic warfare (EW). Current EM systems use magnetic components such as circulators, inductors, and isolators, but these are bulky and cannot be integrated with miniaturized electronic circuitry.
For decades, Global Positioning System (GPS) technology has been incorporated into vehicles and munitions to meet DoD requirements for precision guidance and navigation. GPS dependence creates a critical vulnerability for many DoD systems in situations where the GPS signal is degraded or unavailable.