Defense Advanced Research Projects AgencyTagged Content List

Size, Weight and Power Constraints

Making technologies smaller, lighter and more power-efficient to increase military effectiveness

Showing 54 results for SWAP RSS
As electronic system technology advances – with continual increases in requirements leading to increasing demand for higher power consumption – there has been increasing pressure on the thermal engineering and heat rejection technologies used. The need for performance inevitably leads to operation of most electronic systems at the limits of the available thermal management technology.
Imaging, radar, spectroscopy, and communications systems that operate in the millimeter-wave (MMW) and sub-MMW bands of the electromagnetic spectrum have been difficult to develop because of technical challenges associated with generating, detecting, processing and radiating the high-frequency signals associated with these wavelengths.
Conventional military radio frequency (RF) antenna systems typically employ coaxial cable as the signal conduit between the aperture and the transmit/receive electronics. For long cable lengths, high RF frequencies and wide bandwidths, the cable itself is a key limiter of signal fidelity and link efficiency. Coaxial cable bundles are also large and heavy, a critical drawback for mobile platforms. Photonic technologies, however, may provide low loss, reduced size and weight, immunity to electromagnetic interference, broad bandwidth and overall ability to remote antennas over distances not possible with conventional electronic approaches.
The low cost of digital imaging devices has allowed them to become ubiquitous consumer products. This low cost is made possible by leveraging a mature complementary metal oxide semiconductor (CMOS) processing infrastructure and the ability to fabricate complete focal plane arrays (FPAs) at the wafer scale. A similar trend is occurring at a smaller scale with thermal imaging technologies. Microbolometers that are sensitive in the LWIR spectrum are also manufactured at the wafer scale and the resulting cost reduction is enabling thermal imagers at consumer-grade price points.