Defense Advanced Research Projects AgencyTagged Content List

Size, Weight and Power Constraints

Making technologies smaller, lighter and more power-efficient to increase military effectiveness

Showing 51 results for SWAP RSS
11/21/2013
The submillimeter wave, or terahertz, part of the electromagnetic spectrum falls between the frequencies of 0.3 and 3 terahertz, between microwaves and infrared light. Historically, device physics has prevented traditional solid state electronics (microchips) from operating at the terahertz scale. Unlocking this band’s potential may benefit military applications such as high data rate communications, improved radar and unique methods of spectroscopy—imaging techniques that provide better tools for scientific research. However, access to these applications is limited due to physics.
11/26/2013
Long coils of optical waveguides—any structure that can guide light, like conventional optical fiber—can be used to create a time delay in the transmission of light. Such photonic delays are useful in military application ranging from small navigation sensors to wideband phased array radar and communication antennas. Although optical fiber has extremely low signal loss, an advantage that enables the backbone of the global Internet, it is limited in certain photonic delay applications. Connecting fiber optics with microchip-scale photonic systems requires sensitive, labor-intensive assembly and a system with a large number of connections suffers from signal loss.
12/05/2013
The capability of orbital telescopes to see wide swaths of the earth at a time has made them indispensable for key national security responsibilities such as weather forecasting, reconnaissance and disaster response. Even as telescope design has advanced, however, one aspect has remained constant since Galileo: using glass for lenses and mirrors, also known as optics. High-resolution imagery traditionally has required large-diameter glass mirrors, which are thick, heavy, difficult to make and expensive. As the need for higher-resolution orbital imagery expands, glass mirrors are fast approaching the point where they will be too large, heavy and costly for even the largest of today’s rockets to carry to orbit.
| ISR | Materials | Space | SWAP |
03/06/2014
High-energy lasers (HEL) have the potential to benefit a variety of military missions, particularly as weapons or as high-bandwidth communications devices. However, the massive size, weight and power requirements (SWaP) of legacy laser systems limit their use on many military platforms. Even if SWaP limitations can be overcome, turbulence manifested as density fluctuations in the atmosphere increase laser beam size at the target, further limiting laser target irradiance and effectiveness over long distances.
06/30/2014
Many existing compact, high-data-rate millimeter-wave wireless communications systems use integrated circuits (ICs) made with gallium arsenide (GaAs) or gallium nitride (GaN). These circuits provide high power and efficiency in small packages but are costly to produce and difficult to integrate with silicon electronics that provide most other radio functions. Silicon ICs are less expensive to manufacture in volume than those with gallium compounds but until now have not demonstrated sufficient power output and efficiency at millimeter-wave frequencies used for communications and many other military applications, such as radar and guidance systems.