Defense Advanced Research Projects AgencyTagged Content List

Electromagnetic Spectrum and Bandwidth

Novel concepts and technologies for maximizing use of the electromagnetic spectrum

Showing 6 results for Spectrum + Resources RSS
04/17/2018
Dr. Jay Lewis is the Deputy Director of the Microsystems Technology Office (MTO). In this role, Dr. Lewis helps set the strategic vision for the office, recruits program managers (PMs) who are leaders in their respective fields, and provides the oversight and guidance required to empower the PMs to drive the creation of breakthrough technology for national security.
05/18/2015
Since its inception in 1991, DARPA’s Microsystems Technology Office (MTO) has been working to create and prevent strategic surprise through investments in compact microelectronic components such as microprocessors, microelectromechanical systems (MEMS), and photonic devices. MTO-derived innovations and advanced capabilities in areas such as wide-band gap materials, phased-array radars, high-energy lasers, and infrared imaging have helped the United States establish and maintain technological superiority for more than two decades.
05/18/2015
DARPA’s Strategic Technology Office (STO) is focused on technologies that enable fighting as a network to increase military effectiveness, cost leverage, and adaptability. STO's areas of interest include: Battle Management, Command and Control; Communications and Networks; Intelligence, Surveillance, and Reconnaissance; Electronic Warfare; Positioning, Navigation, and Timing; and Foundational Strategic Technologies and Systems.
01/13/2017
Listen to a podcast featuring MTO program manager Dev Palmer as he talks about turning an early interest in the vacuum tubes of his guitar amplifiers into a career as an electrical engineer. His mission? To push electronic and electromagnetic technology along new frontiers that could lead to more capable radar, electronic warfare, and communications systems, and even to entirely new technologies.
01/02/1963

On November 6, 1959, Cornell University signed a contract with ARPA to conduct development studies for a large-scale ionospheric radar probe and how such an instrument might also serve in radioastronomy and other scientific fields. Four years later, on November 1, 1963, an inauguration ceremony was held in Arecibo, Puerto Rico, for the Arecibo Ionospheric Observatory, later to be known more generally as the Arecibo Observatory.

Its telescope "dish"—the largest in the world until 2016 with the completion in China of the FAST dish telescope—is 1,000 feet (305 meters) in diameter,  167 feet (51 meters) deep, and covers an area of approximately 20 acres (0.08 square kilometers). Development of the Arecibo facility was initially supported as part of the DEFENDER program, a broad-based missile defense program. The observatory was designed to study the structure of the upper ionosphere and its interactions with electromagnetic communications signals.

The observatory now is part of the National Astronomy and Ionosphere Center (NAIC), a national research center operated by SRI International, the Universities Space Research Association (USRA), and Universidad Metropolitana (UMET) through a cooperative agreement with the National Science Foundation (NSF). Researchers have tapped the observatory for their studies of ionospheric physics, radar and radio astronomy, aeronomy, and dynamics of the Earth’s upper atmosphere. The facility also helped NASA select lunar landing sites as well as landing sites for the Viking missions to Mars. The observatory remains in use today.