Defense Advanced Research Projects AgencyTagged Content List

Electromagnetic Spectrum and Bandwidth

Novel concepts and technologies for maximizing use of the electromagnetic spectrum

Showing 40 results for Spectrum + News RSS
09/19/2013
Radios are used for a wide range of tasks, from the most mundane to the most critical of communications, from garage door openers to first responders to military operations. Wireless devices often inadvertently interfere with and disrupt radio communications, and in battlefield environments adversaries may intentionally jam friendly communications. To stimulate the development of radio techniques that can overcome these impediments, DARPA launched its Spectrum Challenge—a competitive demonstration of robust radio technologies that seek to communicate reliably in congested and contested electromagnetic environments without direct coordination or spectrum preplanning.
11/21/2013
The submillimeter wave, or terahertz, part of the electromagnetic spectrum falls between the frequencies of 0.3 and 3 terahertz, between microwaves and infrared light. Historically, device physics has prevented traditional solid state electronics (microchips) from operating at the terahertz scale. Unlocking this band’s potential may benefit military applications such as high data rate communications, improved radar and unique methods of spectroscopy—imaging techniques that provide better tools for scientific research. However, access to these applications is limited due to physics.
12/12/2013
Multinational forces, U.S. government agencies and U.S. troops operating together in forward-deployed locations generally have problems communicating—and not just due to language differences. Technical incompatibility between communications systems can hinder information sharing and timely command and control decisions. DARPA’s Mobile Ad hoc Interoperability Network Gateway (MAINGATE) program is helping overcome this technology barrier. The program is nearing completion and plans to transfer the latest version of the system to Army warfighters still engaged in Afghanistan, but who are now focused more on Force Protection as U.S. forces draw down. The MAINGATE system is providing insights into tactical networking of the future, where systems will need more adaptability and capability.
03/06/2014
High-energy lasers (HEL) have the potential to benefit a variety of military missions, particularly as weapons or as high-bandwidth communications devices. However, the massive size, weight and power requirements (SWaP) of legacy laser systems limit their use on many military platforms. Even if SWaP limitations can be overcome, turbulence manifested as density fluctuations in the atmosphere increase laser beam size at the target, further limiting laser target irradiance and effectiveness over long distances.
04/02/2014
Reliable wireless communications today requires careful allocation of specific portions of the electromagnetic spectrum to individual radio networks. While pre-allocating spectrum is effective in benign environments, radios remain vulnerable to inadvertent interference from other emitters and intentional jamming by adversaries.