Defense Advanced Research Projects AgencyTagged Content List

Electromagnetic Spectrum and Bandwidth

Novel concepts and technologies for maximizing use of the electromagnetic spectrum

Showing 32 results for Spectrum + Electronics RSS
The Microsystems Technology Office’s (MTO) core mission is to develop high-performance intelligent microsystems and next-generation components to ensure U.S. dominance in the areas of Command, Control, Communications, Computing, Intelligence, Surveillance, and Reconnaissance (C4ISR), Electronic Warfare (EW), and Directed Energy (DE). The effectiveness, survivability, and lethality of these systems depend critically on the microsystems contained inside.
05/18/2015
The Microsystems Technology Office’s (MTO) core mission is to develop high-performance intelligent microsystems and next-generation components to ensure U.S. dominance in the areas of Command, Control, Communications, Computing, Intelligence, Surveillance, and Reconnaissance (C4ISR), Electronic Warfare (EW), and Directed Energy (DE). The effectiveness, survivability, and lethality of these systems depend critically on the microsystems contained inside.
01/13/2017
Listen to a podcast featuring MTO program manager Dev Palmer as he talks about turning an early interest in the vacuum tubes of his guitar amplifiers into a career as an electrical engineer. His mission? To push electronic and electromagnetic technology along new frontiers that could lead to more capable radar, electronic warfare, and communications systems, and even to entirely new technologies.
03/26/2013
Two teams of DARPA performers have achieved world record power output levels using silicon-based technologies for millimeter-wave power amplifiers. RF power amplifiers are used in communications and sensor systems to boost power levels for reliable transmission of signals over the distance required by the given application. These breakthroughs were achieved under the Efficient Linearized All-Silicon Transmitter ICs (ELASTx) program. Further integration efforts may unlock applications in low-cost satellite communications and millimeter-wave sensing.
11/21/2013
The submillimeter wave, or terahertz, part of the electromagnetic spectrum falls between the frequencies of 0.3 and 3 terahertz, between microwaves and infrared light. Historically, device physics has prevented traditional solid state electronics (microchips) from operating at the terahertz scale. Unlocking this band’s potential may benefit military applications such as high data rate communications, improved radar and unique methods of spectroscopy—imaging techniques that provide better tools for scientific research. However, access to these applications is limited due to physics.