Defense Advanced Research Projects AgencyTagged Content List

Electromagnetic Spectrum and Bandwidth

Novel concepts and technologies for maximizing use of the electromagnetic spectrum

Showing 28 results for Spectrum + Electronics RSS
Since its inception in 1991, DARPA’s Microsystems Technology Office (MTO) has been working to create and prevent strategic surprise through investments in compact microelectronic components such as microprocessors, microelectromechanical systems (MEMS), and photonic devices. MTO-derived innovations and advanced capabilities in areas such as wide-band gap materials, phased-array radars, high-energy lasers, and infrared imaging have helped the United States establish and maintain technological superiority for more than two decades.
05/18/2015
Since its inception in 1991, DARPA’s Microsystems Technology Office (MTO) has been working to create and prevent strategic surprise through investments in compact microelectronic components such as microprocessors, microelectromechanical systems (MEMS), and photonic devices. MTO-derived innovations and advanced capabilities in areas such as wide-band gap materials, phased-array radars, high-energy lasers, and infrared imaging have helped the United States establish and maintain technological superiority for more than two decades.
01/13/2017
Listen to a podcast featuring MTO program manager Dev Palmer as he talks about turning an early interest in the vacuum tubes of his guitar amplifiers into a career as an electrical engineer. His mission? To push electronic and electromagnetic technology along new frontiers that could lead to more capable radar, electronic warfare, and communications systems, and even to entirely new technologies.
03/26/2013
Two teams of DARPA performers have achieved world record power output levels using silicon-based technologies for millimeter-wave power amplifiers. RF power amplifiers are used in communications and sensor systems to boost power levels for reliable transmission of signals over the distance required by the given application. These breakthroughs were achieved under the Efficient Linearized All-Silicon Transmitter ICs (ELASTx) program. Further integration efforts may unlock applications in low-cost satellite communications and millimeter-wave sensing.
11/21/2013
The submillimeter wave, or terahertz, part of the electromagnetic spectrum falls between the frequencies of 0.3 and 3 terahertz, between microwaves and infrared light. Historically, device physics has prevented traditional solid state electronics (microchips) from operating at the terahertz scale. Unlocking this band’s potential may benefit military applications such as high data rate communications, improved radar and unique methods of spectroscopy—imaging techniques that provide better tools for scientific research. However, access to these applications is limited due to physics.