Defense Advanced Research Projects AgencyTagged Content List

Electromagnetic Spectrum and Bandwidth

Novel concepts and technologies for maximizing use of the electromagnetic spectrum

Showing 11 results for Spectrum + Decentralization RSS
08/19/2016
Nothing is more iconic of today’s high technology than the semiconductor chips inside our computers, phones, military systems, household appliances, fitness monitors, and even birthday cards and pets. Since its inception in 1992, DARPA’s Microsystems Technology Office (MTO) has helped create and prevent strategic surprise through investments in compact microelectronic components, such as microprocessors, microelectromechanical systems (MEMS), and photonic devices. MTO’s pioneering efforts to apply advanced capabilities in areas such as wide-band-gap materials, phased array radars, high-energy lasers, and infrared imaging, have helped the United States establish and maintain technological superiority for more than two decades.
September 20, 2016,
DARPA Conference Center
The Defense Advanced Research Projects Agency (DARPA) Microsystems Technology Office (MTO) is sponsoring a Proposers Day to present its technical vision and mission and to provide information to potential proposers on the MTO Office-Wide Broad Agency Announcement (BAA) and the anticipated Commercial Performer Program Announcement.
Today’s electromagnetic (EM) systems use antenna arrays to provide unique capabilities, such as multiple beam forming and electronic steering, which are important for a wide variety of applications such as communications, signal intelligence (SIGINT), radar, and electronic warfare.
Current military communication systems have limited ability to support mobile, distributed operations in remote geographic areas due to the small size of networks and relatively short range of military radios. Today, military mobile ad hoc networks (MANETs) are used to relay communications services beyond the range of a single radio.
Access to the electromagnetic spectrum is critical to military forces today. Electronic warfare seeks to deny or degrade adversaries’ access to spectrum while minimizing impacts on friendly forces. Currently, electronic warfare strikes are conducted primarily by monolithic, high-value platforms that can have powerful but insufficiently precise effects. These strikes typically impact large geographic areas, for example, and may inadvertently deny spectrum access to friendly users.