Defense Advanced Research Projects AgencyTagged Content List

Electromagnetic Spectrum and Bandwidth

Novel concepts and technologies for maximizing use of the electromagnetic spectrum

Showing 101 results for Spectrum RSS
Officials from Guinness World Records today recognized DARPA’s Terahertz Electronics program for creating the fastest solid-state amplifier integrated circuit ever measured. The ten-stage common-source amplifier operates at a speed of one terahertz (1012 Hz), or one trillion cycles per second—150 billion cycles faster than the existing world record of 850 gigahertz set in 2012.
The process of detecting light—whether with our eyes, cameras or other devices—is at the heart of a wide range of civilian and military applications, including light or laser detection and ranging (LIDAR or LADAR), photography, astronomy, quantum information processing, medical imaging, microscopy and communications. But even the most advanced detectors of photons—the massless, ghostlike packets of energy that are the fundamental units of light—are imperfect, limiting their effectiveness. Scientists suspect that the performance of light-based applications could improve by orders of magnitude if they could get beyond conventional photon detector designs—perhaps even to the point of being able to identify each and every photon relevant to a given application.
By combining complementary mindsets on the leading edges of electronic and radiofrequency device engineering, a pair of researchers in DARPA’s Young Faculty Award program have devised ultratiny, electronic switches that approximate inter-neuron communication. These highly adaptable nanoscale switches can toggle on and off so fast, and with such low loss, they could become the basis of not only computer and memory devices but also multi-function radiofrequency (RF) chips, which users might reprogram on the fly to behave first like a cell-phone’s signal emitter but then, say, as a collision-avoidance radar component or a local radio jammer.
Solid-state electronics began to overtake vacuum tubes in radios, computers and other electronic and radio frequency gadgetry more than 60 years ago. Now we live in a Silicon Age. Even so, vacuum electronic devices, whose origins date to the 19th century, touch our lives every day.
DARPA has awarded a contract for the third and final phase of its Advanced RF Mapping program, known as RadioMap, which seeks to provide real-time awareness of radio spectrum use across frequency, geography and time. Akin to smartphone maps that show color-coded current traffic conditions, RadioMap is developing technology that visually overlays spectrum information on a map enabling rapid frequency deconfliction and maximizing use of available spectrum for communications and intelligence, surveillance and reconnaissance (ISR) systems.