Defense Advanced Research Projects AgencyTagged Content List

Apply Biological Complexity at Scale

Relating to insights that can be derived from examining living-system dynamics at an enormous range of spatial, physical and temporal scales

Showing 41 results for Bio-complexity RSS
The Persistent Aquatic Living Sensors (PALS) program aims to leverage biology to augment the Department of Defense’s existing, hardware-based maritime monitoring capabilities. The program will tap into marine organisms’ innate abilities to sense and respond to perturbations in their environments and apply those abilities to the detection, characterization, and reporting of manned or unmanned underwater vehicles ranging from small autonomous vessels to large nuclear submarines.
Pathogens with pandemic potential, toxic chemicals, and radioactive materials all endanger public health and pose a threat to national security. Despite investment in the development of medical countermeasures (MCMs) to address these threats, many existing MCMs suffer from limited applicability, insufficient efficacy, requirements for repeat dosing, lengthy and complex manufacturing processes, and logistically burdensome storage requirements. In many cases, unique threats require unique responses, setting up a “one threat, one MCM” paradigm.
The RadioBio program aims to establish whether functional signaling via electromagnetic waves between biological cells exists and, if it does, to determine what mechanisms are involved and what information is being transferred. The program seeks to determine the validity of electromagnetic biosignaling claims and, where evidence exists, understand how the structure and function of these natural “antennas” are capable of generating and receiving information in a noisy, cluttered electromagnetic environment.
The Safe Genes program supports force protection and military health and readiness by protecting Service members from accidental or intentional misuse of genome editing technologies. Additional work will leverage advances in gene editing technology to expedite development of advanced prophylactic and therapeutic treatments against gene editors. Advances within the program will ensure the United States remains at the vanguard of the broadly accessible and rapidly progressing field of genome editing.
U.S. warfighters operate in all manner of environments, including tight urban terrain. The safety and effectiveness of the warfighter demand maximum flexibility for maneuvering and responding to circumstances. To overcome obstacles and secure entrance and egress routes, warfighters frequently rely on ropes, ladders and related climbing tools. Such climbing tools cost valuable time to use, have limited application and add to the load warfighters are forced to carry during missions. The Z-Man programs aims to develop biologically inspired climbing aids to enable warfighters to scale vertical walls constructed from typical building materials, while carrying a full combat load, and without the use of ropes or ladders.