Defense Advanced Research Projects AgencyTagged Content List

Novel Sensing and Detection

Novel concepts and devices capable of detecting and monitoring physical phenomena

Showing 16 results for Sensors + Agency RSS
DARPA's Defense Sciences Office (DSO) identifies and pursues high-risk, high-payoff research initiatives across a broad spectrum of science and engineering disciplines and transforms them into important, new game-changing technologies for U.S. national security. Current DSO themes include frontiers in math, computation and design, limits of sensing and sensors, complex social systems, and anticipating surprise. DSO relies on the greater scientific research community to help identify and explore ideas that could potentially revolutionize the state-of-the-art.
DARPA’s Strategic Technology Office (STO) aims to provide the U.S. military lethality using a strategy called Mosaic Warfare: fast, scalable, adaptive joint multi-domain lethality. STO’s areas of interest include: Mosaic Technologies, Mosaic Effect Web Services (EWS), Mosaic Experimentation, and Foundational Strategic Technologies and Systems.
DARPA established the Defense Sciences Office (DSO) in 1980, combining the Nuclear Monitoring Research Office, materials science research, and cybernetic technology efforts into a single office. Since its inception, DSO has spawned two additional technology offices at DARPA: the Microsystems Technology Office (MTO) in 1992 and the Biological Technologies Office (BTO) in 2014.
At a mountaintop event in New Mexico on October 18, 2016, DARPA handed off ownership its Space Surveillance Telescope (SST) from an Agency-led design and construction program to ownership and operation by U.S. Air Force Space Command (AFSPC), which operate the telescope in Australia jointly with the Australian government.
Imaging of Earth from satellites in space has vastly improved in recent years. But the opposite challenge—using Earth-based systems to find, track and provide detailed characterization of satellites and other objects in high orbits—has frustrated engineers even as the need for space domain awareness has grown. State-of-the-art imagery of objects in low Earth orbit (LEO), up to 2,000 km (1,200 miles) high, can achieve resolution of 1 pixel for every 10 cm today, providing relatively crisp details.