Defense Advanced Research Projects AgencyTagged Content List

Novel Sensing and Detection

Novel concepts and devices capable of detecting and monitoring physical phenomena

Showing 21 results for Sensors + Unmanned RSS
On January 25, 2018, DARPA took its Anti-Submarine Warfare (ASW) Continuous Trail Unmanned Vessel (ACTUV) program to one of the best finish lines the Agency knows of—an official transfer of a technology to a follow-on steward of development or to an end user in the field. In this case, following a period of open-water tests of the program’s demonstration vessel—dubbed “Sea Hunter”—to the Office of Naval Research (ONR), the latter organization officially took over responsibility of developing the revolutionary prototype vehicle as the Medium Displacement Unmanned Surface Vehicle (MDUSV).
In collaboration with the Department of Defense’s Joint Improvised Explosive Device Defeat Organization (JIEDDO), DARPA initiated the Vehicle and Dismount Exploitation Radar (VADER) program to design and deploy a radar system for unmanned aerial vehicles (UAVs) or small manned aircraft. Developed for DARPA by Northrop Grumman Electronic Systems, VADER provided synthetic aperture radar and ground moving-target indicator data to detect, localize, and track vehicles and dismounted troops.
Today, cost and complexity limit the Navy to fewer weapons systems and platforms, so resources are strained to operate over vast maritime areas. Unmanned systems and sensors are commonly envisioned to fill coverage gaps and deliver action at a distance. However, for all of the advances in sensing, autonomy, and unmanned platforms in recent years, the usefulness of such technology becomes academic when faced with the question, “How do you get the systems there?” DARPA’s Upward Falling Payloads program seeks to address that challenge.
Cost and complexity limit the number of ships and weapon systems the Navy can support in forward operating areas. A natural response is to offset these costs and risks with unmanned and distributed systems. But how do such systems get there in the first place?
DARPA’s Anti-Submarine Warfare (ASW) Continuous Trail Unmanned Vessel (ACTUV) program seeks to develop a new type of unmanned surface vessel that could independently track adversaries’ ultra-quiet diesel-electric submarines over thousands of miles. One of the challenges that the ACTUV program is addressing is development of autonomous behaviors for complying with the International Regulations for Preventing Collisions at Sea, known as COLREGS. Substantial progress has been made in developing and implementing those behaviors.