Defense Advanced Research Projects AgencyTagged Content List

Novel Sensing and Detection

Novel concepts and devices capable of detecting and monitoring physical phenomena

Showing 19 results for Sensors + Space RSS
The National Aeronautics and Space Administration’s (NASA) Hubble Telescope takes the clearest images of the universe and transmits these to Earth via its antennas. From 1978 to 1980, DARPA funded the design, fabrication, delivery and installation of two antenna booms for the Hubble Space Telescope to demonstrate the advantages of metal-matrix composites. Made of a graphite-fiber/aluminum matrix, these booms permit radio frequency conduction while simultaneously serving as structural supports. Deploying this dual-use composite material resulted in a 60% weight savings over an alternative boom- design candidate. Through this new material technology, DARPA met NASA’s design requirements for weight, stiffness, and dimensional stability. DARPA also contributed to the Hubble’s optical successes. The telescope incorporates algorithms and concepts pioneered by DARPA’s Directed Energy Program in the late 1970s and early 1980s, by which mirrors can be deliberately deformed to correct for wavefront imperfections.

The Agency initiated the ARPA Midcourse Optical Station (AMOS) program in 1961 with the goal of developing an astronomical-quality observatory to obtain precise measurements and images of satellites, payloads, and other space objects re-entering the atmosphere from space. ARPA located the facility atop Mount Haleakala, Maui, Hawaii, nearly 10,000 feet above sea level.

By 1969, the quality and potential of AMOS had been demonstrated, and a second phase began to measure properties of re-entry bodies at the facility under the Advanced Ballistic Reentry System Project. In the late 1970s, successful space object measurements continued in the infrared and visible ranges, and laser illumination and ranging were initiated.

Other developments such as the compensated imaging program were tested successfully at AMOS. By 1984, the AMOS twin infrared telescopes had become a highly automated system and DARPA transferred it to the U.S. Air Force as one of the primary sensors of the Air Force Space Tracking System. In 1993, the Air Force renamed AMOS as the Air Force Maui Optical and Supercomputing Site.

One of the world’s earliest and most well-known spy satellite programs, the now declassified Corona photo-reconnaissance program was jointly funded by DARPA and the Central Intelligence Agency. Withstanding a series of initial failures, the program scored its first success in August 1960 when a canister of film dropped back through the atmosphere was successfully recovered, delivering a trove of intelligence photos taken over Soviet territory. The Corona program continued to acquire crucial Cold War intelligence until the mission ended in 1972.

Before DARPA was established, a President’s Science Advisory Committee panel and other experts had concluded that reliable ballistic missile defense (BMD) and space surveillance technologies would require the ability to detect, track, and identify a large number of objects moving at very high speeds. Responding to these needs, DARPA in 1959 initiated a competition for the design and construction of a large, experimental two-dimensional phased array with beam steering under computer control rather than requiring mechanical motion of the antenna.

Known as the Electronically Steered Array Radar (ESAR) Program, the focus of the effort was to develop low-cost, high-power tubes and phase shifters, extend component frequency ranges, increase bandwidth, apply digital techniques, and study antenna coupling. DARPA pioneered the construction of ground-based phased array radars such as the FPS-85. This radar system had a range of several thousand miles and could detect, track, identify, and catalog Earth-orbiting objects and ballistic missiles. The FPS-85 quickly became part of the Air Force SPACETRACK system and was in operation from 1962 until the SPACETRACK unit was deactivated in early 1967.

At a mountaintop event in New Mexico on October 18, 2016, DARPA handed off ownership its Space Surveillance Telescope (SST) from an Agency-led design and construction program to ownership and operation by U.S. Air Force Space Command (AFSPC), which operate the telescope in Australia jointly with the Australian government.