Defense Advanced Research Projects AgencyTagged Content List

Novel Sensing and Detection

Novel concepts and devices capable of detecting and monitoring physical phenomena

Showing 5 results for Sensors + Microchips RSS
Many essential military capabilities—including autonomous navigation, chemical-biological sensing, precision targeting and communications—increasingly rely upon laser-scanning technologies such as LIDAR (think radar that uses light instead of radio waves). These technologies provide amazing high-resolution information at long ranges but have a common Achilles heel: They require mechanical assemblies to sweep the laser back and forth. These large, slow opto-mechanical systems are both temperature- and impact-sensitive and often cost tens of thousands of dollars each—all factors that limit widespread adoption of current technologies for military and commercial use.
See that black speck on the Lincoln’s penny-minted nostril? And on the right, notice another three of those specks comfortably framed by the eye of a needle? Those semiconductor chiplets, or “dielets” as DARPA Program Manager Kerry Bernstein calls them, could become Lilliputian electronic tamper-watching sentinels affixed to virtually every chip built into commercial and military systems.
DARPA published its Young Faculty Award (YFA) 2018 Research Announcement today, seeking proposals in 26 different topic areas—the largest number of YFA research areas ever solicited.
Only a few decades ago, finding a particular channel on the radio or television meant dialing a knob by hand, making small tweaks and adjustments to hone in on the right signal. Of course, we now take such fine tuning for granted, simply pressing a button to achieve the same effect. This convenience is enabled by radio frequency synthesis, the generation of accurate signal frequencies from a single reference oscillator.
The Direct On-Chip Digital Optical Synthesizer (DODOS) program seeks to create a technological revolution in optical frequency control analogous to the disruptive advances in microwave frequency control in the 1940s.