Defense Advanced Research Projects AgencyTagged Content List

Novel Sensing and Detection

Novel concepts and devices capable of detecting and monitoring physical phenomena

Showing 5 results for Sensors + Microchips RSS
05/21/2015
Many essential military capabilities—including autonomous navigation, chemical-biological sensing, precision targeting and communications—increasingly rely upon laser-scanning technologies such as LIDAR (think radar that uses light instead of radio waves). These technologies provide amazing high-resolution information at long ranges but have a common Achilles heel: They require mechanical assemblies to sweep the laser back and forth. These large, slow opto-mechanical systems are both temperature- and impact-sensitive and often cost tens of thousands of dollars each—all factors that limit widespread adoption of current technologies for military and commercial use.
09/04/2015
See that black speck on the Lincoln’s penny-minted nostril? And on the right, notice another three of those specks comfortably framed by the eye of a needle? Those semiconductor chiplets, or “dielets” as DARPA Program Manager Kerry Bernstein calls them, could become Lilliputian electronic tamper-watching sentinels affixed to virtually every chip built into commercial and military systems.
09/07/2017
DARPA published its Young Faculty Award (YFA) 2018 Research Announcement today, seeking proposals in 26 different topic areas—the largest number of YFA research areas ever solicited.
04/25/2018
Only a few decades ago, finding a particular channel on the radio or television meant dialing a knob by hand, making small tweaks and adjustments to hone in on the right signal. Of course, we now take such fine tuning for granted, simply pressing a button to achieve the same effect. This convenience is enabled by radio frequency synthesis, the generation of accurate signal frequencies from a single reference oscillator.
The Direct On-Chip Digital Optical Synthesizer (DODOS) program seeks to create a technological revolution in optical frequency control analogous to the disruptive advances in microwave frequency control in the 1940s.