Defense Advanced Research Projects AgencyTagged Content List

Novel Sensing and Detection

Novel concepts and devices capable of detecting and monitoring physical phenomena

Showing 21 results for Sensors + History RSS
01/01/1978
The National Aeronautics and Space Administration’s (NASA) Hubble Telescope takes the clearest images of the universe and transmits these to Earth via its antennas. From 1978 to 1980, DARPA funded the design, fabrication, delivery and installation of two antenna booms for the Hubble Space Telescope to demonstrate the advantages of metal-matrix composites. Made of a graphite-fiber/aluminum matrix, these booms permit radio frequency conduction while simultaneously serving as structural supports. Deploying this dual-use composite material resulted in a 60% weight savings over an alternative boom- design candidate. Through this new material technology, DARPA met NASA’s design requirements for weight, stiffness, and dimensional stability. DARPA also contributed to the Hubble’s optical successes. The telescope incorporates algorithms and concepts pioneered by DARPA’s Directed Energy Program in the late 1970s and early 1980s, by which mirrors can be deliberately deformed to correct for wavefront imperfections.
01/01/2018
On January 25, 2018, DARPA took its Anti-Submarine Warfare (ASW) Continuous Trail Unmanned Vessel (ACTUV) program to one of the best finish lines the Agency knows of—an official transfer of a technology to a follow-on steward of development or to an end user in the field. In this case, following a period of open-water tests of the program’s demonstration vessel—dubbed “Sea Hunter”—to the Office of Naval Research (ONR), the latter organization officially took over responsibility of developing the revolutionary prototype vehicle as the Medium Displacement Unmanned Surface Vehicle (MDUSV).
01/01/1961

The Agency initiated the ARPA Midcourse Optical Station (AMOS) program in 1961 with the goal of developing an astronomical-quality observatory to obtain precise measurements and images of satellites, payloads, and other space objects re-entering the atmosphere from space. ARPA located the facility atop Mount Haleakala, Maui, Hawaii, nearly 10,000 feet above sea level.

By 1969, the quality and potential of AMOS had been demonstrated, and a second phase began to measure properties of re-entry bodies at the facility under the Advanced Ballistic Reentry System Project. In the late 1970s, successful space object measurements continued in the infrared and visible ranges, and laser illumination and ranging were initiated.

Other developments such as the compensated imaging program were tested successfully at AMOS. By 1984, the AMOS twin infrared telescopes had become a highly automated system and DARPA transferred it to the U.S. Air Force as one of the primary sensors of the Air Force Space Tracking System. In 1993, the Air Force renamed AMOS as the Air Force Maui Optical and Supercomputing Site.

01/02/1963

On November 6, 1959, Cornell University signed a contract with ARPA to conduct development studies for a large-scale ionospheric radar probe and how such an instrument might also serve in radioastronomy and other scientific fields. Four years later, on November 1, 1963, an inauguration ceremony was held in Arecibo, Puerto Rico, for the Arecibo Ionospheric Observatory, later to be known more generally as the Arecibo Observatory.

Its telescope "dish"—the largest in the world until 2016 with the completion in China of the FAST dish telescope—is 1,000 feet (305 meters) in diameter,  167 feet (51 meters) deep, and covers an area of approximately 20 acres (0.08 square kilometers). Development of the Arecibo facility was initially supported as part of the DEFENDER program, a broad-based missile defense program. The observatory was designed to study the structure of the upper ionosphere and its interactions with electromagnetic communications signals.

The observatory now is part of the National Astronomy and Ionosphere Center (NAIC), a national research center operated by SRI International, the Universities Space Research Association (USRA), and Universidad Metropolitana (UMET) through a cooperative agreement with the National Science Foundation (NSF). Researchers have tapped the observatory for their studies of ionospheric physics, radar and radio astronomy, aeronomy, and dynamics of the Earth’s upper atmosphere. The facility also helped NASA select lunar landing sites as well as landing sites for the Viking missions to Mars. The observatory remains in use today.

01/01/1978
In 1978, DARPA integrated a number of technologies—including lasers, electro-optical sensors, microelectronics, data processors, and radars—important for precision guided munitions (PGMs) under its Assault Breaker program. Over a four-year period, Assault Breaker laid the technological foundation for several smart-weapon systems that were ultimately fielded with high success. Among these systems are the Joint Surveillance Target Attack Radar System (JSTARS), which integrated PGMs with advanced intelligence, surveillance, and reconnaissance (ISR) systems developed with DARPA support; the Global Hawk unmanned aerial vehicles; a U.S. Air Force air-to-ground missile with terminally guided submunitions; the long-range, quick-response, surface-to-surface Army Tactical Missile System (ATMS), which featured all-weather, day/night capability effective against mobile and other targets; and the Brilliant Anti-armor Tank (BAT) submunition, which used acoustic sensors on its wings to detect and target tanks.