Defense Advanced Research Projects AgencyTagged Content List

Novel Sensing and Detection

Novel concepts and devices capable of detecting and monitoring physical phenomena

Showing 12 results for Sensors + Countermeasures RSS

From 1971 to 1974, ARPA supported research on "glassy" carbon, a unique foam material composed of pure carbon and that combined low weight, high strength, and chemical inertness. The program led to techniques for producing the material with an exceptionally porous, high surface area combined with high rigidity, low resistance to fluid flow, and resistance to very high temperatures in a non-oxidizing environment.

Eyed originally for roles in electro-chemistry because of its high surface area, the material proved suitable for surgical implants, especially heart valves. Development of the valves began about three years after the end of the ARPA program, with production commencing in 1985. In 1990, the U.S. Food and Drug Administration (FDA) gave its approval for using glassy carbon in implants in a valve market that grew within the decade to 100,000 units and a market value of $200 million. A related form, pyrolytic carbon, remains common in the inner orifice and leaflets of artificial valves.


With the blue water threat of free-ranging, nuclear-armed Soviet submarines coming to a head in 1971, the Department of Defense (DoD) assigned DARPA a singular mission: Revamp the U.S. military’s anti-submarine warfare (ASW) capabilities to track enemy subs under the open ocean where the U.S. Navy’s existing Sound Surveillance System (SOSUS) was falling short. At the time, the U.S. Navy was already working on what would become its Surveillance Towed Array Sensor System, or SURTASS, through which surface ships towed long, mobile arrays of sensors to listen for submarine activity. Telemetry and data-handling issues greatly limited the system’s capabilities.

That’s when DARPA committed funds for the LAMBDA program to modify oil-industry-designed seismic towed arrays so they could detect submarine movement. DARPA-funded scientists began experiments at submarine depths, and soon generated spectacular results. In 1981, the DoD gave quick approval for production of a LAMBDA-enhanced SURTASS array, without requiring further study, a highly unusual decision for a program that had experienced a major technology shift late in the game. The system—which with DARPA participation would become enhanced by way of leading-edge computational tools, satellite-based data linkages, and computer networking—would become the Navy’s go-to method for tracking mobile Soviet subs for the remainder of the Cold War. By 1985, Secretary of the Navy John Lehman was so confident in his force’s ability to keep tabs on elusive Soviet boomers (a nickname for ballistic missile submarines), he declared that in the event the Cold War turned hot, he would attack Soviet subs “in the first five minutes of the war.”

DARPA’s Anti-Submarine Warfare (ASW) Continuous Trail Unmanned Vessel (ACTUV) program seeks to develop a new type of unmanned surface vessel that could independently track adversaries’ ultra-quiet diesel-electric submarines over thousands of miles. One of the challenges that the ACTUV program is addressing is development of autonomous behaviors for complying with the International Regulations for Preventing Collisions at Sea, known as COLREGS. Substantial progress has been made in developing and implementing those behaviors.
DARPA today is holding a christening ceremony for the technology demonstration vessel it has developed and built through the Agency’s Anti-Submarine Warfare (ASW) Continuous Trail Unmanned Vessel (ACTUV) program. Taking place in Portland, Oregon, the event marks the vessel’s formal transition from a DARPA-led design and construction project to a new stage of open-water testing to be conducted jointly with the Office of Naval Research (ONR).
“It’s my privilege and honor to christen thee Sea Hunter!” DARPA Director Arati Prabhakar proclaimed, capping the christening ceremony last week for the technology demonstration vessel developed and built through the Agency’s Anti-Submarine Warfare (ASW) Continuous Trail Unmanned Vessel (ACTUV) program. She then broke a ceremonial “champagne” bottle (the contents were non-alcoholic) against the bow of the prototype ship, in front of approximately 100 guests, including Deputy Secretary of Defense Robert Work and senior U.S. Navy and government officials.