Defense Advanced Research Projects AgencyTagged Content List

Novel Sensing and Detection

Novel concepts and devices capable of detecting and monitoring physical phenomena

Showing 222 results for Sensors RSS
Picture an intelligence officer in the field. She is trying to piece together a suspected threat, and has access to someone who may have a role in carrying it out. There may be traces of biological or chemical agents on his clothing or hair. She can look for them, but they’re transient, and often present in such low concentrations that she’ll need to send samples to a laboratory. Or she can check his epigenetic markers, read a history of any time he’s been exposed to threat agents, and start piecing together a chain of evidence right there in the field, in real time.
The world’s vast oceans and seas offer seemingly endless spaces in which adversaries of the United States can maneuver undetected. The U.S. military deploys networks of manned and unmanned platforms and sensors to monitor adversary activity, but the scale of the task is daunting and hardware alone cannot meet every need in the dynamic marine environment. Sea life, however, offers a potential new advantage. Marine organisms are highly attuned to their surroundings—their survival depends on it—and a new program out of DARPA’s Biological Technologies Office aims to tap into their natural sensing capabilities to detect and signal when activities of interest occur in strategic waters such as straits and littoral regions.
Bacteria underpins much of our world, acting behind the scenes to affect the health and behavior of animals and plants. They help produce food, provide oxygen, and even reshape the environment through a vast array of biological processes. They come in a phenomenal number of strains—many still unknown—and thrive in different ecological and environmental niches all over the world. But while their diverse behaviors makes them essential to life, bacteria can also be deadly.
Advanced commercially available technologies—such as additive manufacturing (3-D printing), small-scale chemical reactors for pharmaceuticals, and CRISPR gene-manipulation tools—have opened wide access to scientific exploration and discovery. In the hands of terrorists and rogue nation states, however, these capabilities could be misused to concoct chemical, biological, radiological, nuclear, and high-yield explosive (CBRNE) weapons of mass destruction (WMD) in small quantities and in form factors that are hard to detect.
Only a few decades ago, finding a particular channel on the radio or television meant dialing a knob by hand, making small tweaks and adjustments to hone in on the right signal. Of course, we now take such fine tuning for granted, simply pressing a button to achieve the same effect. This convenience is enabled by radio frequency synthesis, the generation of accurate signal frequencies from a single reference oscillator.