Defense Advanced Research Projects AgencyTagged Content List

Novel Sensing and Detection

Novel concepts and devices capable of detecting and monitoring physical phenomena

Showing 222 results for Sensors RSS
04/28/2017
DARPA’s Defense Sciences Office (DSO), which identifies and pursues high-risk, high-payoff research initiatives across a broad spectrum of science and engineering disciplines, will host Discover DSO Day (D3) on June 15, in Arlington, Virginia. The event is designed to familiarize potential proposers with the mission, research areas of interest, and business processes pursued by the DSO, a fundamental research office with a history of not only reshaping existing technical fields but also creating entirely new disciplines—and of transforming bold, paradigm-challenging initiatives into game-changing technologies for U.S. national security.
08/11/2017
DARPA’s Defense Sciences office (DSO)—whose mission is to identify and pursue high-risk, high-payoff research initiatives across a broad spectrum of science and engineering disciplines—today announced the first programs under its new Disruptioneering effort, which pushes for faster identification and exploration of bold and risky ideas with the goal of accelerating scientific discovery.
08/15/2017
DARPA’s Towed Airborne Lift of Naval Systems (TALONS) research effort recently demonstrated its prototype of a low-cost, elevated sensor mast aboard a commissioned U.S. Navy vessel for the first time. The crew of USS Zephyr, a 174-foot (53-meter) Cyclone-class patrol coastal ship, evaluated the technology demonstration system over three days near Naval Station Mayport, Florida.
09/07/2017
DARPA published its Young Faculty Award (YFA) 2018 Research Announcement today, seeking proposals in 26 different topic areas—the largest number of YFA research areas ever solicited.
09/11/2017
Here’s your task. Build a tiny sensor that detects a signature of infrared (IR) wavelengths characteristic of a hot tailpipe, a wood fire, or perhaps even a human being. Design the sensor so that it can remain dormant and unattended but always alert, even for years, without drawing on battery power. And build the sensor so that the act of detection itself can initiate the emission of a signal that alerts warfighters, firefighters, or others that a “signal-of-interest” has been detected. It’s just the sort of intelligence, reconnaissance, and surveillance (ISR) technology that can increase situational awareness while minimizing the need for potentially dangerous maintenance missions to replace run-down batteries.