Defense Advanced Research Projects AgencyTagged Content List

Novel Sensing and Detection

Novel concepts and devices capable of detecting and monitoring physical phenomena

Showing 171 results for Sensors RSS
Physics, chemistry, and materials for new national security capabilities
DARPA's Defense Sciences Office (DSO) identifies and pursues high-risk, high-payoff research initiatives across a broad spectrum of science and engineering disciplines and transforms them into important, new game-changing technologies for U.S. national security. Current DSO themes include frontiers in math, computation and design, limits of sensing and sensors, complex social systems, and anticipating surprise. DSO relies on the greater scientific research community to help identify and explore ideas that could potentially revolutionize the state-of-the-art.
The mission of the Defense Sciences Office (DSO) is to identify and pursue high-risk, high-payoff research initiatives across a broad spectrum of science and engineering disciplines and to transform these initiatives into disruptive technologies for U.S. national security.
On January 25, 2018, DARPA took its Anti-Submarine Warfare (ASW) Continuous Trail Unmanned Vessel (ACTUV) program to one of the best finish lines the Agency knows of—an official transfer of a technology to a follow-on steward of development or to an end user in the field. In this case, following a period of open-water tests of the program’s demonstration vessel—dubbed “Sea Hunter”—to the Office of Naval Research (ONR), the latter organization officially took over responsibility of developing the revolutionary prototype vehicle as the Medium Displacement Unmanned Surface Vehicle (MDUSV).

The Agency initiated the ARPA Midcourse Optical Station (AMOS) program in 1961 with the goal of developing an astronomical-quality observatory to obtain precise measurements and images of satellites, payloads, and other space objects re-entering the atmosphere from space. ARPA located the facility atop Mount Haleakala, Maui, Hawaii, nearly 10,000 feet above sea level.

By 1969, the quality and potential of AMOS had been demonstrated, and a second phase began to measure properties of re-entry bodies at the facility under the Advanced Ballistic Reentry System Project. In the late 1970s, successful space object measurements continued in the infrared and visible ranges, and laser illumination and ranging were initiated.

Other developments such as the compensated imaging program were tested successfully at AMOS. By 1984, the AMOS twin infrared telescopes had become a highly automated system and DARPA transferred it to the U.S. Air Force as one of the primary sensors of the Air Force Space Tracking System. In 1993, the Air Force renamed AMOS as the Air Force Maui Optical and Supercomputing Site.