Defense Advanced Research Projects AgencyTagged Content List

Fundamental Physical Science

Pushing the boundaries of knowledge of the physical sciences

Showing 33 results for Fundamentals + News RSS
The inherent goodness of miniaturizing electronics has been key to a wide array of technology innovations and an important economic driver for several decades. For example, the seemingly endless shrinking of the transistor has allowed the semiconductor industry to place ever more devices on the same amount of silicon. Each time the size shrunk, transistors became faster and used less power, allowing increasingly capable electronics in smaller packages that cost less. In recent years, power requirements, excessive heat and other problems associated with physical limitations have reduced the advantages of continuing to shrink size.
In science, many of the most interesting events occur at a scale far smaller than the unaided human eye can see. Medical researchers might realize a range of breakthroughs if they could look deep inside living biological cells, but existing methods for imaging either lack the desired sensitivity and resolution or require conditions that lead to cell death, such as cryogenic temperatures. Recently, however, a team of Harvard University-led researchers working on DARPA’s Quantum-Assisted Sensing and Readout (QuASAR) program demonstrated imaging of magnetic structures inside of living cells.
How do you take the temperature of a cell? The familiar thermometer from a doctor’s office is slightly too big considering the average human skin cell is only 30 millionths of a meter wide. But the capability is significant; developing the right technology to gauge and control the internal temperatures of cells and other nanospaces might open the door to a number of defense and medical applications: better thermal management of electronics, monitoring the structural integrity of high-performance materials, cell-specific treatment of disease and new tools for medical research.
Researchers from the National Institute of Standards and Technology (NIST), with funding from DARPA’s Quantum-Assisted Sensing and Readout (QuASAR) program, have built a pair of ytterbium atomic clocks that measure time with a precision that is approximately ten times better than the world’s previous best clocks, also developed under QuASAR. How good are they? The record-setting clocks are stable to within less than two parts per quintillion (1 followed by 18 zeros). They measure time so precisely that their readout would be equivalent to specifying the Earth’s diameter to less than the width of a single atom or the age of the known universe to less than one second.
Constantly losing energy is something we deal with in everything we do. If you stop pedaling a bike, it gradually slows; if you let off the gas, your car also slows. As these vehicles move, they also generate heat from friction. Electronics encounter a similar effect as groups of electrons carry information from one point to another. As electrons move, they dissipate heat, reducing the distance a signal can travel. DARPA-sponsored researchers under the Mesodynamic Architectures (Meso) program, however, may have found a potential way around this fundamental problem.