Defense Advanced Research Projects AgencyTagged Content List

Fundamental Physical Science

Pushing the boundaries of knowledge of the physical sciences

Showing 4 results for Fundamentals + Microsystems RSS
01/17/2013
The inherent goodness of miniaturizing electronics has been key to a wide array of technology innovations and an important economic driver for several decades. For example, the seemingly endless shrinking of the transistor has allowed the semiconductor industry to place ever more devices on the same amount of silicon. Each time the size shrunk, transistors became faster and used less power, allowing increasingly capable electronics in smaller packages that cost less. In recent years, power requirements, excessive heat and other problems associated with physical limitations have reduced the advantages of continuing to shrink size.
12/17/2013
Constantly losing energy is something we deal with in everything we do. If you stop pedaling a bike, it gradually slows; if you let off the gas, your car also slows. As these vehicles move, they also generate heat from friction. Electronics encounter a similar effect as groups of electrons carry information from one point to another. As electrons move, they dissipate heat, reducing the distance a signal can travel. DARPA-sponsored researchers under the Mesodynamic Architectures (Meso) program, however, may have found a potential way around this fundamental problem.
The Mesodynamic Architectures (Meso) program seeks to address future Defense needs by exploiting unique characteristics of matter and energy emerging at small spatial and short temporal scales including new states of matter, untapped forces, novel relationships between fields and excitations and the importance of noise and nonlinearity. The parallel goals of the Meso program are to provide DoD with unrivaled communication, sensing, and computation by exploiting mesoscale characteristics, while establishing well-defined problems to accelerate the transition to quantum engineering.
For decades, miniaturizing electronics has been key to a wide array of technology innovations and an important economic driver. As an example, the seemingly endless shrinking of the transistor has allowed the semiconductor industry to place ever more devices on the same amount of silicon. Each time the size decreased, transistors became faster and used less power, allowing increasingly capable electronics in smaller packages at reduced cost.