Defense Advanced Research Projects AgencyTagged Content List

Fundamental Physical Science

Pushing the boundaries of knowledge of the physical sciences

Showing 34 results for Fundamentals + Complexity RSS
Synthetic chemistry is important across countless technological areas, from medicines to energetics to advanced coatings to functional materials. While our synthetic capabilities have developed rapidly over the last century, current approaches are still slow and inefficient, with poor reproducibility and scalability and limited use of prior knowledge. Such an approach not only limits production of known materials, but also impedes discovery of better synthetic routes and completely new molecules.
Certain natural processes perform par excellence computation with levels of efficiency unmatched by classical digital models. Levinthal’s Paradox illustrates this well: In nature, proteins fold spontaneously at short timescales (milliseconds) whereas no efficient solution exists for solving protein-folding problems using digital computing. The Nature as Computer (NAC) program proposes that in nature there is synergy between dynamics and physical constraints to accomplish effective computation with minimal resources.
The explosive growth of global digital connectivity has opened new possibilities for designing and conducting social science research. Once limited by practical constraints to experiments involving just a few dozen participants-often university students or other easily available groups-or to correlational studies of large datasets without any opportunity for determining causation, scientists can now engage thousands of diverse volunteers online and explore an expanded range of important topics and questions.
Program Manager
Dr. Michael Fiddy joined DARPA as a program manager in the Defense Sciences Office in September 2016. His current interests include fundamental studies of wave-matter interactions from RF to visible light frequencies. Advancing scattering and inverse scattering methods for multiple scattering media leads to new imaging techniques and tools to synthesize 2-D and 3-D materials and structures, including those with sub-wavelength features.
Program Manager
Dr. William Carter is a program manager in the Defense Sciences Office. He was formerly the director of the Materials and Microsystems Laboratory at HRL Laboratories. He received his doctorate in applied physics from Harvard University in 1997 and has more than 15 years of experience managing government and industrial materials research programs. His background spans applied physics, materials science, and mechanics.