Defense Advanced Research Projects AgencyTagged Content List

Satellites

Related to manmade objects placed in Earth orbit for military, commercial or scientific use

Showing 13 results for Satellites + News RSS
01/22/2013
Inserting new capabilities into a satellite is no simple task. Doing so as that satellite hurdles through space 22,000 miles above the Earth is a bit more challenging still. DARPA’s Phoenix program, which hopes to repurpose retired satellites while they remain in orbit, seeks to fundamentally change how space systems could be designed here on earth and then sustained once in space.
04/02/2014
The process of designing, developing, building and deploying satellites is long and expensive. Satellites today cannot follow the terrestrial paradigm of “assemble, repair, upgrade, reuse,” and must be designed to operate without any upgrades or repairs for their entire lifespan—a methodology that drives size, complexity and ultimately cost. These challenges apply especially to the increasing number of satellites sent every year into geosynchronous Earth orbit (GEO), approximately 22,000 miles above the Earth. Unlike objects in low Earth orbit (LEO), such as the Hubble Space Telescope, satellites in GEO are essentially unreachable with current technology.
09/03/2014
An increasing number of expensive, mission-critical satellites are launched every year into geostationary Earth orbit (GEO), approximately 22,000 miles (36,000 kilometers) above the Earth. Unlike objects in low Earth orbit (LEO), such as the Hubble Space Telescope, satellites in GEO are essentially unreachable with current technology. As a result, these satellites are designed to operate without any upgrades or repairs for their entire lifespan—a methodology that demands increased size, complexity and cost. The ability to safely and cooperatively interact with satellites in GEO would immediately revolutionize military and commercial space operations alike, lowering satellite construction and deployment costs and improving satellite lifespan, resilience and reliability.
11/10/2014
Launches of satellites for the Department of Defense (DoD) or other government agencies often cost hundreds of millions of dollars each and require scheduling years in advance for one of the handful of available slots at the nation’s limited number of launch locations. This slow, expensive process is causing a bottleneck in placing essential space assets in orbit, especially in geosynchronous Earth orbit (GEO) approximately 22,000 miles (36,000 kilometers) above the Earth.
02/05/2015
Through its Airborne Launch Assist Space Access (ALASA) program, DARPA has been developing new concepts and architectures to get small satellites into orbit more economically on short notice. Bradford Tousley, director of DARPA’s Tactical Technology Office, provided an update on ALASA today at the 18th Annual Federal Aviation Administration (FAA)’s Commercial Space Transportation Conference in Washington, D.C. Tousley discussed several key accomplishments of the program to date, including successful completion of Phase 1 design, selection of the Boeing Company as prime contractor for Phase 2 of the program, which includes conducting 12 orbital test launches of an integrated prototype system.