Defense Advanced Research Projects AgencyTagged Content List

Robotics

Technological systems capable of autonomously carrying out various tasks

Showing 15 results for Robotics + Satellites RSS
01/22/2013
Inserting new capabilities into a satellite is no simple task. Doing so as that satellite hurdles through space 22,000 miles above the Earth is a bit more challenging still. DARPA’s Phoenix program, which hopes to repurpose retired satellites while they remain in orbit, seeks to fundamentally change how space systems could be designed here on earth and then sustained once in space.
04/02/2014
The process of designing, developing, building and deploying satellites is long and expensive. Satellites today cannot follow the terrestrial paradigm of “assemble, repair, upgrade, reuse,” and must be designed to operate without any upgrades or repairs for their entire lifespan—a methodology that drives size, complexity and ultimately cost. These challenges apply especially to the increasing number of satellites sent every year into geosynchronous Earth orbit (GEO), approximately 22,000 miles above the Earth. Unlike objects in low Earth orbit (LEO), such as the Hubble Space Telescope, satellites in GEO are essentially unreachable with current technology.
09/03/2014
An increasing number of expensive, mission-critical satellites are launched every year into geostationary Earth orbit (GEO), approximately 22,000 miles (36,000 kilometers) above the Earth. Unlike objects in low Earth orbit (LEO), such as the Hubble Space Telescope, satellites in GEO are essentially unreachable with current technology. As a result, these satellites are designed to operate without any upgrades or repairs for their entire lifespan—a methodology that demands increased size, complexity and cost. The ability to safely and cooperatively interact with satellites in GEO would immediately revolutionize military and commercial space operations alike, lowering satellite construction and deployment costs and improving satellite lifespan, resilience and reliability.
11/10/2014
Launches of satellites for the Department of Defense (DoD) or other government agencies often cost hundreds of millions of dollars each and require scheduling years in advance for one of the handful of available slots at the nation’s limited number of launch locations. This slow, expensive process is causing a bottleneck in placing essential space assets in orbit, especially in geosynchronous Earth orbit (GEO) approximately 22,000 miles (36,000 kilometers) above the Earth.
03/25/2016
Hundreds of military, government and commercial satellites reside today in geosynchronous Earth orbit (GEO) some 22,000 miles (36,000 kilometers) above the Earth—a perch ideal for providing communications, meteorology and national security services, but one so remote as to preclude inspection and diagnosis of malfunctioning components, much less upgrades or repairs.