Defense Advanced Research Projects AgencyTagged Content List

Restoration of Function

Biological, prosthetic and other technologies designed to provide function equivalent to function lost due to disease or injury

Showing 34 results for Restoration RSS
The Electrical Prescriptions (ElectRx) program aims to support military operational readiness by reducing the time to treatment, logistical challenges, and potential off-target effects associated with traditional medical interventions for a wide range of physical and mental health conditions commonly faced by our warfighters. ElectRx seeks to deliver non-pharmacological treatments for pain, general inflammation, post-traumatic stress, severe anxiety, and trauma that employ precise, closed-loop, non-invasive modulation of the patient’s peripheral nervous system.
With a focus on wounded warriors and facilitating their return to military service, the Hand Proprioception and Touch Interfaces (HAPTIX) program is pursuing key technologies to enable precision control of and sensory feedback from sensor-equipped upper-limb prosthetic devices. If successful, the resulting system would provide users near-natural control of prosthetic hands and arms via bi-directional peripheral nerve implants. The program has a strong focus on technology handoff and aims to create and transition clinically relevant technology in support of wounded warriors suffering from single or multiple limb loss.
The Neural Engineering System Design (NESD) program seeks to develop high-resolution neurotechnology capable of mitigating the effects of injury and disease on the visual and auditory systems of military personnel. In addition to creating novel hardware and algorithms, the program conducts research to understand how various forms of neural sensing and actuation might improve restorative therapeutic outcomes.
Improved technology for military uniforms, body armor, and equipment saves the lives of thousands of Service members injured on the battlefield. Unfortunately, many of those survivors come home seriously and permanently wounded, suffering unprecedented rates of limb loss and traumatic brain injury. This crisis has motivated great interest in the science of and technology for restoring sensorimotor functions lost to amputation and injury to the central nervous system.
The Histology for Interface Stability over Time (HIST) effort identifies leading mechanisms of interface degradation and failure. HIST teams are also developing new invasive and non-invasive histology methods to assess neural-recording-interface status and performance, accurate predictive models of interface performance, and methods to reduce the time required to assess and develop robust interfaces.