Defense Advanced Research Projects AgencyTagged Content List

Resilience and Robustness

Enabling technologies and systems to preserve effectiveness despite damage or other challenging conditions

Showing 11 results for Resilience + Autonomy RSS
As commercial technologies become more advanced and widely available, adversaries are rapidly developing capabilities that put our forces at risk. To counter these threats, the U.S. military is developing systems-of-systems concepts in which networks of manned and unmanned platforms, weapons, sensors, and electronic warfare systems interact over robust satellite and tactical communications links. These approaches offer flexible and powerful options to the warfighter, but the complexity introduced by the increase in the number of employment alternatives creates a battle management challenge.
Current artificial intelligence (AI) systems excel at tasks defined by rigid rules – such as mastering the board games Go and chess with proficiency surpassing world-class human players. However, AI systems aren’t very good at adapting to constantly changing conditions commonly faced by troops in the real world – from reacting to an adversary’s surprise actions, to fluctuating weather, to operating in unfamiliar terrain.
Modern military engagements increasingly take place in complex and uncertain battlefield conditions where attacks can come from multiple directions at once, and in the electromagnetic spectrum and cyber domains, as well. U.S. Army and U.S. Marine Corps dismounted infantry squads have been unable to take full advantage of some highly effective multi-domain defensive and offensive capabilities that vehicle-assigned forces currently enjoy -- in large part because many of the relevant technologies are too heavy and cumbersome for individual warfighters to carry or too difficult to use under demanding field conditions.
To succeed in their missions, military units must have a robust, multi-faceted picture of their operational environments, including the location, nature and activity of both threats and allied forces around them. Technology is making this kind of rich, real-time situational awareness increasingly available to airborne and other vehicle-assigned forces, along with a capacity to deploy precision armaments more safely, quickly and effectively. Dismounted infantry squads, however, have so far been unable to take full advantage of some of these highly effective capabilities because many of the technologies underlying them are too heavy and cumbersome for individual Soldiers and Marines to carry or too difficult to use under demanding field conditions.
Program Manager
Dr. Bartlett Russell joined DARPA as a program manager in April of 2019. Her work focuses on understanding the variability of human cognitive and social behavior to enable the decision-maker, improve analytics, and generate autonomous and AI systems that enable human adaptability. Prior to joining DARPA, Russell was a senior program manager and lead of the human systems and autonomy research area in Lockheed Martin’s Advanced Technology Laboratories.